COURSE OBJECTIVES AND LEARNING OUTCOMES

This course introduces students to advanced statistical techniques and their application to problems in political science.

Students will be able to:

1. understand and apply basic concepts of Bayesian inference
2. conduct a Monte Carlo analysis to discover model characteristics and diagnose problems
3. understand and implement computational estimation techniques for sampling from an analytically unknown distribution (e.g., MCMC and bootstrapping)
4. explain, implement, interpret, and diagnose problems with Bayesian statistical models (including hierarchical models and item response theory estimates)
5. conduct hypothesis tests in the Bayesian framework
6. explain the consequences of missing data in a sample, and implement corrective statistical techniques

GRADING POLICIES AND ASSIGNMENT DETAILS

Grade Components:

- Homework: 25%
- Exam 1: 25%
- Exam 2: 25%
- Final Exam: 25%

Grading Scale:

- 100%-97%: A+
- 96.9%-93%: A
- 92.9%-90%: A-
- 89.9%-87%: B+
- 86.9%-83%: B
- 82.9%-80%: B-
- 79.9%-77%: C+
- 76.9%-73%: C
- 72.9%-70%: C-
- 69.9%-67%: D+
- 66.9%-63%: D
- 62.9%-60%: D-
- >59.5%: F
Exams: There will be three exams in this class, two midterms and a final. All exams are cumulative, but will focus on material learned since the last exam. You must complete each exam within the allotted time period, and must submit a typed LaTeX answer sheet. The exams are open book and open note, but you may not consult anyone for advice on the exam. The rough timing of the exams is indicated on the course outline, and specific times will be scheduled in consultation with the class.

Homework: Homework problem sets will be distributed during class. I encourage collaborative work on problem sets: the goal of a homework problem set is to help you learn the material and enable you to perform well on the (non-collaborative!) exams. With that said, simply copying another student’s homework answers is not permitted and will be treated as academic dishonesty.

Homework problems will be presented by students as an in-class activity. Students must be ready to present a solution (even a partial solution) for any of the assigned problems. I recommend that students pre-coordinate who would like to present which problem prior to class. If no one volunteers to present a problem, and I call one someone who cannot present it, that person will receive a 5% deduction on their homework grade. (I expect that this will never happen.)

All homeworks must be typed in LaTeX.

Attendance: Attendance is mandatory in this class, and as graduate students I expect that attendance will not be a problem for you. Every class you fail to attend (without an acceptable excuse—see below) will result in a 2.5 percentage point deduction from your final grade. (I expect that this will never happen.)

Attendance penalties may be waived in the event of death in the immediate family (parent, spouse, sibling, or child) within 2 weeks before the due date, in the event of an unforeseeable medical emergency affecting yourself, your spouse, or your child, if you are participating in a pre-approved academic activity (e.g., a conference), or for other unforeseeable exigencies; all waivers are at the discretion of the instructor. Supporting documentation may be required to support an attendance penalty waiver.

Course Policies

Late Work: Assignments are due at the date and time I specify for the assignment. Late homeworks will be marked off at 5 percentage points for the first 24 hours late, and an additional 10 percentage points for every subsequent 24 hours late. For exams, the first hour late incurs a 5 percentage point penalty and each additional hour incurs a 10 percentage point penalty.

Late work penalties may be waived in the event of death in the immediate family (parent, spouse, sibling, or child) within 2 weeks before the due date, in the event of an unforeseeable medical emergency affecting yourself, your spouse, or your child, or
for other unforeseeable exigencies; all waivers are at the discretion of the instructor. Supporting documentation may be required to support an attendance penalty waiver.

Honor Code/Academic Misconduct: All forms of academic misconduct will be handled according to the Rice University Honor Code. Details on the Honor Code are available at http://honor.rice.edu/honor-system-handbook/.

If you ever have any questions about what you should do to stay within the honor code on a particular assignment, PLEASE contact me with your question and I can assist you. I cannot guarantee a timely response unless you contact me at least 24 hours in advance of the time the assignment is due.

Students with Disabilities: If you have a disability and require accommodation in this class, please contact me as soon as possible (within the first two weeks of class) to discuss these accommodations. You will also need to contact the Disability Support Services Office (telephone extension: 5841) in the Allen Center.

Syllabus Change Policy: The policies of this syllabus (other than absence policies) may be changed by Prof. Esarey with advance notice.

COURSE MATERIALS

Required Texts:

Recommended Texts:

Other readings are available on the web or the OWL-Space website.

Software: This course will teach material primarily through R and WinBugs. R is free and available from http://cran.r-project.org/. WinBUGS and OpenBUGS are free and available from http://www.mrc-bsu.cam.ac.uk/software/bugs/.

All students must have a valid Rice e-mail address and login (and access to the OWL-space website) to participate in this course.

COURSE OUTLINE AND ASSIGNED READINGS

0) **Software and Preliminaries**

Questions: What are the basic tools required for this course?

Skills and concepts: using R, LaTeX, and WinBUGS/OpenBUGS/JAGS

Readings: none.

1) **Basic Concepts of Bayesian Inference**

Questions: What is Bayesian inference, and how is it different from inference derived from other procedures (e.g., ML)? What is a prior, and how do we specify it? How do we test a hypothesis in a Bayesian sense?

Skills and concepts: Bayes’ rule; conjugate prior and analytically closed posterior probability densities; Bayesian p-values and credible intervals.

Readings:

- Jackman, Chapter 1
- (recommended) Gill, Chapter 1
2) Simple Bayesian Models

Questions: How can we use Bayesian models for simple models (mean/variance estimates and regressions)?

Skills and concepts: Estimating a mean and variance with Bayesian methods; Bayesian regression.

Readings:

- Jackman, Chapter 2
- (recommended) Gill, Chapters 2-3

3) Basic Monte Carlo Procedures and Sampling Algorithms

Questions: How does one conduct a Monte Carlo simulation? How does the idea of Monte Carlo analysis apply to sampling from a target distribution? What is a Markov Chain?

Skills and concepts: Monte Carlo simulation methods; sampling algorithms; Markov chains.

Readings:

- Jackman, Chapters 3-4
- (recommended) Gill, Chapter 8

4) The Metropolis-Hastings algorithm and the Gibbs Sampler

Questions: How do we produce estimates of a posterior density, and how do these depend on a prior? How do we implement such a technique in R? How do we ensure that our model is behaving as expected?

Skills and concepts: MCMC; the Metropolis-Hastings algorithm; the Gibbs sampler; model checking.

Readings:

- Jackman, Chapter 5
- (recommended) Gill, Chapter 9
5) Practical MCMC for Estimating Models

Questions: What software packages exist to automate MCMC estimation in R? How can we apply these techniques to substantively relevant statistical models?

Skills and concepts: MCMCpack, WinBUGS, and R2WinBugs; estimating simple GLM-family models with Bayesian methods.

Readings:

- Jackman, Chapter 6
- The WinBUGS manual, particularly the Tutorial section. URL: http://cran.r-project.org/web/packages/R2WinBUGS/vignettes/R2WinBUGS.pdf
- Sturtz et al., “R2WinBUGS: A Package for Running WinBUGS from R.” URL: http://cran.r-project.org/web/packages/R2WinBUGS/vignettes/R2WinBUGS.pdf
- (recommended) Gill, Chapter 12

6) Bayesian Hierarchical Linear Models and GLMs

Questions: What is a hierarchical model? How do we estimate a hierarchical model? How do we report results from a hierarchical model? How do hierarchical models relate to standard OLS, random effects, and fixed effects models? In what situations would we expect a hierarchical model to improve inference, and in which would we not expect improvement?

Skills and Concepts: review of random effects/fixed effects; estimating and interpreting a hierarchical GLM model in R using the lme4 package; comparing RE/FE results to HLM/hierarchical GLM results

Readings:

- Gelman and Hill: Chapters 11-12 and 14-15
 o Chapter 15: Hierarchical Linear Models
 o Chapter 16: Generalized Linear Models
- (recommended) Jackman, Chapters 7-8
7) Fitting Hierarchical Models with BUGS

Questions: How do you fit and interpret a hierarchical model using WinBUGS, OpenBUGS, and/or JAGS?

Skills and Concepts: WinBUGS/OpenBUGS, R2WinBUGS, and JAGS use for building and interpreting hierarchical models.

Readings:
- Gelman and Hill: Chapters 16-17

8) Item Response Theory and the Scaling of Latent Dimensions

Questions: What is item response theory? How does it relate unobservable (latent) dimensions to observable behavior? What are potential applications of IRT to political science (e.g., what can we measure and how can the measurements be used)? When would we expect IRT to do a good job of measuring latent concepts, and when would we expect problems?

Skills and Concepts: origins and historical uses of IRT; estimation of IRT ideal points via MCMC; applications of IRT to Political Science; assessing the robustness of IRT estimates.

Readings:
 - Chapters 1-2 and 5: “Introduction to Measurement,” “The One-Parameter Model,” and “The Two-Parameter Model.”

*************** CUTOFF FOR EXAM 2 ******************
9) **Model Checking, Validation, and Comparison**

Questions: How do we evaluate whether our procedures are working correctly? How do we detect and combat specification and convergence problems in our model? How do we compare models to one another?

Skills and concepts: posterior predictive checks; DICs; Bayes factors.

Readings:
- Gelman and Hill, Chapter 19
 - Chapter 6: Model checking and improvement

10) **Missing Data Imputation**

Questions: If observations are missing in your data set, what are the consequences for inference? What can be done to improve the situation? When does missing data imputation help, and when does it hurt?

Skills and Concepts: types of missingness in data; casewise deletion; simple imputation; multiple imputation; multiple imputation via chained equations; Bayesian data augmentation.

Readings:
- Gelman and Hill: Chapter 25
11) **Multilevel Regression and Poststratification**

Questions: How can we use Bayesian methods (specifically, hierarchical models and their “strength borrowing” characteristics) to estimate disparate relationships in small subsamples of a larger data set?

Skills and Concepts: multilevel regression and poststratification; survey analysis with hierarchical Bayesian models.

Readings:

12) **Bayesian Spatial Autoregressive Models**

Questions: How can we adapt Bayesian models to dependent variables that are linked over time and space?

Skills and Concepts: Bayesian conditional autoregressive models and the BayesCAR package in R.

Readings: