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Abstract

A state-dependent dynamic system is one in which (a) the marginal effect of x on
y at time t (∂yt/∂xt) depends on the prior value of the dependent variable yt−1, and
(b) the persistence of the dependent variable (∂yt/∂yt−1) depends on xt. We present a
methodological strategy for dealing with state-dependent dynamic systems and demon-
strate the consequences of ignoring state dependence. As an applied example, we find
evidence of state dependence in the relationship between presidential approval and
economic performance: high unemployment rates are most damaging to presidential
approval among presidents with the highest initial approval ratings.

Introduction

It is often observed that monetary policy is effective at regulating growth in good economic

times, but ineffective at regulating growth during a recession. Indeed, monetary policy is

often analogized to a string: it can be used to pull growth down during a bubble, but not

to push it up. Consequently, the relationship between monetary policy (x) and current

economic growth (yt) is a function of the past state of economic growth (yt−1).

This is an example of what we call a state-dependent dynamic system (SDDS), one in

which (a) the marginal effect of x on y at time t (∂yt/∂xt) depends on the prior value of

the dependent variable yt−1, and (b) the persistence of the dependent variable (∂yt/∂yt−1)
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depends on xt.
1 Some related ideas have been articulated in substantive work, in particu-

lar the Markov transition/dynamic probit model introduced by Przeworski et al. (2002) in

the study of democratic regime transition and used in other applications (e.g., Powell and

Mitchell, 2007; Kucik and Reinhardt, 2008; Sing, 2010).2 We think that state-dependent dy-

namic systems are often created by political institutions, many of which involve continuous

dependent variables not amenable to the dynamic probit, and that developing a method-

ological strategy to study these systems would enhance our understanding of politics. We

demonstrate how simple microfoundational processes can create a state-dependent system

and how these microfoundations are likely to be common in politics.

For example, we believe that the relationship between presidential approval and national

economic performance in the United States might be such a system.3 A long tradition of

research has argued that economic conditions have immediate and negative effects on the

level of presidential popularity, and this research has found much evidence (but by no means

uniformly supportive evidence) for the proposition (Berlemann and Enkelmann, 2012). It is

also well-known4 that presidential approval tends to erode over the course of a president’s

term. We believe the speed of this erosion could be a function of both economic performance

and prior approval rating. Economic conditions have a direct effect on voters’ approval

ratings, but might also make efforts to organize opposition more effective and make it easier

to convince persuadable voters to oppose the administration. If this is true, then poor

economic performance will speed the decline of approval over time as a result of learning

and opinion diffusion. The implication is that the relationship between lagged presidential

approval (yt−1) and current presidential approval (yt) depends on the state of the economy

1Both conditions will be true if either is true in structural models where symmetry of effect is imposed

via Young’s theorem
(

∂2yt

∂x∂yt−1
= ∂2yt

∂yt−1∂x

)
, as in typical GLM models.

2Additionally, Franzese (2002, Chapter 3) studies the relationship between government fractionalization
and budget deficits. He finds that fractionalization contributes to fiscal policy inaction, meaning that deficits
expand when the accumulated debt is already high and compound interest accumulates, but stay stable or
shrink when existing debts are low.

3We thank Matt Lebo for suggesting this application to us.
4For example, MacKuen (1983) notes that “Upon first sight, the striking thing about presidential popu-

larity’s movement is that for most presidents it moves ineluctably downward from the first day in office” (p.
178).
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(xt): when the state of the economy is worse, a president’s support will erode faster (dyt/dyt−1

will shrink as xt grows). As a consequence of Young’s theorem (presented in footnote 1) this

also means that the negative relationship between the state of the economy and current

approval (dyt/dxt) is larger when lagged presidential approval (yt−1) is higher.

In this paper, we lay out a statistical model to study state-dependent dynamic systems

and consider the model’s properties and relationship to existing work. We find that a rel-

atively simple model that interacts yt−1 with xt can recover correct estimates of an SDDS

data generating process (DGP) for a continuous dependent variable in a time series cross-

sectional data set of reasonable length (T ≥ 20). A notable advantage of this model is that

techniques for properly interpreting and presenting results are already well-known to the

discipline (Brambor, Clark and Golder, 2006). We also propose and verify tests for the pres-

ence of state-dependence in an empirical dataset. Surprisingly, we find that state-dependent

DGPs create complex and unanticipated interactions among the independent variables in

their relationship on the dependent variable that can be recovered from a properly specified

model. Finally, we use our SDDS model to study the relationship between presidential ap-

proval and economic performance. Our extension of an earlier model by Geys (2010) finds

that high unemployment rates are most damaging to the approval ratings of presidents with

the highest initial approval.

A dynamic interaction model for state-dependent dy-

namic systems

To see whether the relationship between economic performance and U.S. presidential approval

(or any other relationship of interest to political scientists) is state-dependent, we need a

way to quantitatively study state-dependence. This includes articulating a statistical model,

describing how to extract substantively important quantities from that model, verifying its

reliability at recovering state-dependent DGPs, and finding a way to test for the presence
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(or absence) of state-dependence. We begin with a model.

A statistical model of state dependence

Suppose that the relationship between an independent variable xit and a dependent variable

yit for a unit i at time t is conditional on the contextual value of y at the previous time t−1.

Where a linear DGP is appropriate, this suggests the following dynamic interaction model:

yit = β0 + β1yi(t−1) + β2xit + β3

(
xityi(t−1)

)
+ β4zit + uit (1)

Here, i indexes a unit and t indexes time; the data is a time-series cross-section. The

relationship between xit and yit depends on the value of the lagged dependent variable

yi(t−1). Suppose that β2 and β3 are both positive. In this case, changes in xit cause yit

to grow, but growth is accelerated in an environment where yi(t−1) is already large. Other

forms of state-dependence are possible, but we focus on this model because it is simple,

has broad application, and the lessons learned from it apply to other models with a similar

structure.5

The dynamic probit model of Przeworski et al. (2002, pp. 137-139) shares the idea that

a data-generating process can depend on its prior state:

Pr(yt = 1|yt−1 = 0) = Φ(Xα)

5For example, Franzese (2002, Chapter 3) employs an error-correction model with a lag interaction term:

∆yit = β0 + β1∆yi(t−1) + β2∆yi(t−2) + β3yi(t−1) + β4xit + β5
(
xityi(t−1)

)
+ β6zit + uit

This model makes the change in y for unit i at time t a function of past changes in y, past levels of y, and
exogenous variables, where the effect of certain exogenous variables is contingent on past levels. Based on
prior work showing the close relationship between error-correction model and the lagged dependent variable
model (De Boef and Keele, 2008), we would expect our findings to be highly applicable to the ECM context.
An ECM model directly equivalent to ours would be:

∆yit = β0 + β1yi(t−1) + β2∆xit + β3xi(t−1) + β4
(
xityi(t−1)

)
+ β5∆zit + β6zi(t−1) + uit

where we obtain this model by subtracting yt−1 from both sides of equation 1, then adding and subtracting
xi(t−1) and zi(t−1) to the right hand side. This model lacks the lagged ∆y terms of Franzese’s model that
would change the relationship between yit, yi(t−1), and xit that we describe.
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Pr(yt = 0|yt−1 = 1) = Φ(Xβ)

This structure maps directly into a Markov model of transition between the two states of

y, where the probability of switching from y = 0 → 1 is determined by a different process

than the probability of switching from y = 1→ 0; for example, economic growth and a high

GDP may prevent transition from democracy to autocracy but have little bearing on the

transitions from autocracy to democracy. But this model is designed for discrete dependent

variables only.6

Microfoundations of state dependence

The idea of state dependence is simple: the effect of x on y depends on the prior state

of y. But what underlying causal processes would justify using a model like 1? Here we

consider three possibilities, each of which we believe has plausible and potentially-valuable

applications in political science.

Direct state dependence: contextual causality

We begin with the simplest case: equation 1 is a direct description of the causal mechanism

that is generating the data. That is, the causal power of some independent variable xt

on the dependent variable yt at time t is directly blunted or enhanced when the lagged

dependent variable yt−1 gets larger (we drop the unit index i for simplicity). The asymmetric

effectiveness of monetary policy on growth may be such a case; we illustrate the argument

using a simplified model of investment behavior.

Suppose that individual investors borrow and spend capital when they expect that capital

to pay off in profitable returns. We posit that this return is proportional to a monotonic

function of the economic growth rate, f (yt), and an error term εj that is fixed for each

investor j but stochastic with respect to the population of investors. Further, we suppose

6Additionally, dynamic probit imposes state-dependence on all independent variables, leading to a less
efficient estimate in cases where only some variables have state-dependent effects.
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that actors will form their expectation of future returns on the basis of past levels of growth,

so that E [f (yt)] = f (yt−1). Consequently, an investor j’s expected profit per dollar invested

will be:

E [πjt] = E [f (yt)− r + εj]

= f (yt−1)− r + εj

where r is the current interest rate, set by the central bank. Investors will only spend when

r < f (yt−1) + εj; alternatively, the proportion of investors who invest p = F (f (yt−1)− r)

where F is the cumulative density of ε. Concordantly, decreasing r will have a smaller

marginal effect on investment when yt−1 is small because of the shape of the cumulative

density function (CDF), but will have a larger marginal effect on investment when yt−1 is

large. This feeds back to present growth levels if present growth is a function of current

investment, yt = g (p).

The dynamic is straightforward. When investors’ expectations of future profits f (yt−1)

is near zero or negative, lowering interest rates r will not produce additional investment

because r is bounded at zero and therefore cannot go low enough to make investment a

profitable proposition. Ergo, the relationship between growth and interest rates will be weak

when past growth is weak. By contrast, when f (yt−1) is large, changes in r can substantially

change the profitability of investment and have a significant effect on investment decisions.

Thus, the relationship between growth and interest rates will be strong when past growth is

strong.

Of course, the actual linkages between interest rates, investment, and growth are con-

siderably more complicated than this model suggests. But the model suffices to show how

state dependence can exist directly in the data generating process as a consequence of rel-

atively simple forces that are commonly found in social scientific applications. In this case,

profit-seeking by investors combined with feedback between investment and growth creates
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state dependence, creating a low growth/cheap money “liquidity trap” that monetary policy

authorities strive to avoid as they manage the macroeconomy.

Direct state dependence: changing returns to scale

There are other causal mechanisms through which a data generating process might be state

dependent. We would, for example, expect many government actions or programs to face

changing returns to scale for a variety of reasons. A United Nations peacekeeping force

might be adept at limiting local or small-scale conflicts but ineffective at curbing larger-scale

conflicts (e.g. those involving more states or states with greater capabilities) simply because

the UN cannot field enough forces to deter in the latter cases. To take another example,

a jobs counseling program might be effective at reducing unemployment when a moderate

number of clients are served by a staff of closely-supervised professionals, but much less

effective when overwhelmed by a huge number of unemployed persons that inundates a small

staff or prompts the creation of a larger and less efficient bureaucracy.

In these two cases and others like them, the driving force of state dependence is changing

returns to scale. Our two examples are both illustrations of diminishing returns to scale:

a particular policy intervention is designed to influence the dependent variable (conflict

deaths or unemployment rates, in our examples), but these interventions become less effective

as the dependent variable grows. There can also be cases of increasing returns to scale:

interventions to affect the dependent variable become stronger as the dependent variable

gets larger.

Put otherwise, changing returns to scale means that the relationship between the depen-

dent variable yt at time t and an independent variable xt depends on the prior state of the

dependent variable. We can represent this relationship in simple linear fashion:

∂yt
∂xt

= β1 + β2yt−1 (2)
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Of course, this marginal effect structure is directly implied by our model in equation 1.

When β2 > 0, there are increasing returns to scale; when β2 < 0, there are decreasing or

diminishing returns to scale.

Equivalently, some forces may have a proportional effect on the dependent variable instead

of a cardinal effect, changing yt−1 by a proportion of its size rather than by some absolute

number. In principle, economic policies designed as “automatic stabilizers” are designed to

work this way (i.e., by cooling inflation more as the economy grows hotter and by injecting

more stimulus as growth falls). In cases like these, the marginal effect of the relevant variable

is also given by equation 2 and implies a state-dependent model structure.

Indirect state dependence: learning and diffusion

The aggregation of many heterogeneous data generating processes can result in a state-

dependent system, even when the individual DGPs are not themselves state-dependent,

because the individual processes interact with one another. Consider the example of pres-

idential approval ratings in the United States, which we will revisit more closely later in

the paper. Prior work has argued that voters are not only influenced by external events,

such as increased unemployment or the outbreak of war, but also by one another: opinions

change via persuasion inside social networks and through new information obtained via the

media and personal contacts. External events may mediate the flow of opinions through

social networks and enhance voters’ receptiveness to opposition arguments. If so, changing

macroeconomic conditions will have immediate effects on those directly affected, plus longer

term secondary effects as information diffuses through the population and as voters influence

each other.

For example, increased unemployment presumably causes decreased presidential approval

from those who lose their jobs. But it also provides a sociotropic reason for other, still-

employed workers to disapprove and to be more susceptible to the appeals of opposition

parties. These secondary effects will not be immediate, as information takes time to spread
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through social networks, overcome favorable prior beliefs, and motivate coherent opposition

movements. These processes are always happening during any presidential administration,

but poor economic performance makes them quicker and more efficaceous. In short, in-

creasing unemployment and declining growth should not just provide a shock to presidential

approval, but should make its usual downward trend stronger. The statistical model implied

by this story resembles equation 1, as we now demonstrate.

As we noted above and in the introduction, presidential approval ratings tend to deteri-

orate over time. This provides the starting point for a simple model, wherein in the absence

of other effects (or noise) the approval rating y at time t is given by:

yt = αyt−1

for α ∈ (0, 1). Rearranging terms, this model implies that each term a president loses

yt − yt−1

yt−1

= −(1− α)

proportion of his or her previous supporters. This is equivalent to

−
(

1− dyt
dyt−1

)
= − (1− α)

which makes intuitive sense; the term on the left-hand side is also the proportion of voters

that a president expects to lose in each time period. Of course, there is more to to presidential

approval than simple declines over time, and a more realistic model of approval will include

other influences:

yt = αyt−1 + βxt + εt

where xt may represent, for example, the effect of macroeconomic conditions. In these

models, changes in an independent variable like xt have long-term impacts beyond their

immediate effect; the initial impact reverberates over time through the lag term (Wilson
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and Butler, 2007, p. 107; Keele and Kelly, 2006, p. 189; De Boef and Keele, 2008). But if

our argument above is correct, then it will also be the case that changes in macroeconomic

conditions will change the decay of approval:

yt = αyt−1 + β1xt + β2xtyt−1 + εt

Using the previous technique, we find that the speed at which presidential approval declines

depends on economic conditions:

−
(

1− dyt
dyt−1

)
= − (1− α− β2xt)

If xt measures contemporaneous unemployment, for example, then greater unemployment

will cause a president to lose a greater share of supporters at each time period.

Complex dynamics and unexpected conditionalities cre-

ated by state dependence

Any form of state-dependent relationship between x and y creates interesting temporal dy-

namics. As we noted earlier, it is already well-understood that changes in x have long-term

impacts (beyond the effect at time t) on the dependent variable through the lag coefficient

in a model with a lagged dependent variable.7 In our dynamic interaction model (equation

1), this story is more subtle: both the instantaneous and long-term marginal effects of x

on y are highly contextual. Even more surprisingly, the long-term impact of independent

variables that are not state-dependent, like z, are contingent on the level of variables with

state-dependent effects like x—even without an explicit interaction term between these two

variables.

7See, e.g., Wilson and Butler (2007, p. 107), Keele and Kelly (2006, p. 189), and De Boef and Keele
(2008).
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Table 1: Model on Simulated Data

β s.e.

intercept 0.02695 0.02492
yi(t−1) 0.20391 0.02742
xityi(t−1) 0.31411 0.02572
xit 0.49081 0.02210
zit 0.53688 0.02156

OLS Regression Model. # of observations = 270.
R2 = 0.8193.

The upshot is that a relatively simple theoretical concept—the idea that the effect of

x on y depends on the prior state of y—has complex and important empirical implications

for substantive inference that must be carefully teased out by an analyst. In this section,

we illustrate how to derive the instantaneous and long-term marginal effects of independent

variables, showing how these marginal effects are contextual and suggesting ways to make

this contextuality clear to a reader.

Instantaneous marginal effects of x on y

In an OLS regression without state dependence, most marginal effects can be read directly

off a coefficient table as a simple β coefficient. A dynamic interaction model has a more

complicated marginal effect owing to the interaction term between xit and yi(t−1) (Ai and

Norton, 2003; Braumoeller, 2004; Kam and Franzese, 2007). We recommend displaying these

effects using the technique of Brambor, Clark and Golder (2006): calculate the instantaneous

marginal effect ∂yit/∂dxit and its standard error for multiple values of yi(t−1) using simulation,

then display a plot of this relationship. Such a plot allows the reader to see how the effects

of a change in the independent variable will differ in different contexts. For the model in

equation 1, the instantaneous marginal effect is β2 + β3yi(t−1).

To illustrate the process, we generated a time series cross-sectional dataset out of a DGP

with yit = 0.2yi(t−1) + 0.5xit + 0.3 ∗ xit ∗ yi(t−1) + 0.5zit; the data set has 10 time periods and
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Figure 1: The Effect of xit on yit, from Table 1
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30 units, and therefore 300 total observations.8 Because the model includes a lag, one time

period was discarded for each unit, leading to a final N = 270 in the regression. We estimated

a correctly specified OLS regression on this data set; the results are shown in Table 1. We

then drew 1000 samples out of the multivariate normal distribution of β̂ using the variance-

covariance matrix of the regression; for each draw, we calculated ∂yit/∂dxit = β̂2 + β̂3yi(t−1)

for every value of yi(t−1) ∈ [−6, 4]. We plot the median and 95% confidence interval of this

derivative in Figure 1.

As the figure shows, changes in xit can either increase or decrease yit depending on the

state of the world. When yi(t−1) is less than about -3, the marginal effect of increases in xit

is negative; otherwise, the marginal effect is positive. Interpreted substantively, the DGP

tends to be a self-reinforcing system: when y is already large, increases in xit tend to make

it even larger; when y is negative, increases in xit tend to have little or even a negative effect

8xit was drawn from the uniform distribution between -2 and 2. Starting values of yi1 were drawn from
the uniform distribution between -1 and 1.
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on y.

Long term marginal effect of x on y

The first step for determining the long term marginal effect of x on y is to determine the

steady state of y associated with a level of x. We can then determine how this steady state

y changes as xit changes. We present a technique that analysts can use to visually present

long-term marginal effects for easy interpretation.

The model in equation 1 establishes a differential equation that must be solved for y in

order to determine the steady state value of y. Start by rearranging terms slightly:

yit − yi(t−1) = β0 + β2xit + β3

(
xityi(t−1)

)
+ β4zit − (1− β1) yi(t−1) + uit

In a steady state, yit = yi(t−1). So, setting these terms equal to a steady state y, we have:

0 = β0 + β2xit + β3 (xity) + β4zit − (1− β1) y + uit

We may now solve this equation for y (dropping the indices on x and z) and take expectations

to eliminate the random term uit:

E[y] =
β0 + β2x+ β4z

(1− β1 − β3x)
(3)

Equation 3 shows the expected steady state of y associated with a particular value of x.

It differs from the standard steady state calculation for a model with a lagged dependent

variable via the presence of the β3x term in the denominator.

This process of calculating the long-term change in y caused by an instantaneous change

in xit is illustrated in Figure 2. The figure depicts the evolution of yit for forty time periods

of a model where yit = 0.2yi(t−1) + 0.5xit + 0.3 ∗ xit ∗ yi(t−1) + 0.5zit; we held zit = 1. For

the first ten time periods, x = 1 and the associated steady state y = 2. At t = 10, depicted

13



Figure 2: Long-term change in y after a change in x at t = 10
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by a dotted line in the graph, x increases to 1.5. The instantaneous change in y associated

with this change in x is (0.5 + 0.3 ∗ 2) ∗ 0.5 = 0.55. However, the long-term change in y is

far greater: over the next 25 periods, y increases to a new steady state of 3.57—a long term

marginal effect of about 1.57.

To account for the change in the steady state x, we can use equation 3 to determine the

change in the steady state of y associated with a change in x. The process is reasonably

simple: calculate the steady state y for both values of x, then subtract the two. The change

in steady state calculation for the change in x from 1 to 1.5 is:

0.5 (1.5) + 1(0.5)

(1− 0.2− 0.3 (1.5)))
− 0.5 (1) + 1(0.5)

(1− 0.2− 0.3(1)))
≈ 1.57 (4)

As equations 3 and 4 make clear, the long term marginal effect of xit on y depends both

on the starting value of xit and its ending value xi(t+1), not just the gap between them.
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The value of variables that are not state-dependent also matter, as the presence of x in

the denominator does not allow the z values to cancel. Marginal effects must be calculated

for changes of interest; they cannot be universally calculated for all possible changes. To

illustrate this, we revisit an earlier example where we generated a time series cross-sectional

dataset (N = 30, T = 10) out of a DGP with yit = 0.2yi(t−1) +0.5xit+0.3∗xit∗yi(t−1) +0.5zit.

Using the results from Table 1, what can we predict about the change in steady state y as x

changes? We used the 1000 draws of β that we simulated from the variance-covariance model

to calculate the 95% confidence interval for the long term marginal effect using equation 3.

For example, suppose that a case starts at x = 0 and then moves to xnew. The marginal

effect and its 95% confidence interval are presented in Figure 4 for values of xnew between -1.5

and 1.5. The figure shows that the marginal effect of a change in x varies greatly depending

on the value of xnew. When x changes from 0 to -1, y declines by about 0.5. but when x

changes from 0 to 1, y rises by nearly double that amount. In fact, a sufficiently large change

in x can cause explosive growth and cause the series to become non-stationary; note that

equation 3 for this DGP would indicate a steady state y =∞ for x ≥ 2.66.

Stationarity

The potential for explosive growth in y in the prior example raises an important question:

how do we know when a state dependent time series is stationary? Given that our model

(equation 1) is an AR(1) process, a lag coefficient with an absolute value less than 1 indicates

stationarity (Keele and Kelly, 2006). In our model, the relationship between yt and yt−1

varies depending on the value of x. Imitating the typical procedure for a standard time

series9 without state-dependence, we might look for the roots in L of:

[1− (β2 + β3xt)L] yt = 0

9For an overview, see Chatfield (2004).
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Figure 3: Long Term Marginal Effect Plot for x with 95% Confidence Interval, z = 0.5
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where L is the lag operator (and dropping the panel index for simplicity). These roots are:

L =
1

(β2 + β3xt)

and are greater than 1 whenever (β2 + β3xt) < 1. Ergo, the series becomes non-stationary

whenever whenever (β2 + β3xt) ≥ 1, or equivalently whenever xt ≥ (1− β2) /β3.

But what if xt is only slightly greater than(1− β2) /β3, and only for a short time? If x

stays at or above (1− β2) /β3 permanently, it will produce an integrated time series and all

the typical problems of modeling it (without, e.g., appropriately differencing the series) will

apply. But it is not clear that the series will become explosive when xt ≈ (1− β2) /β3 for

intermittent spells. Indeed, such series may not even have a particularly long memory: if the

value of xt drops, the total lag coefficient (β2 + β3xt) declines accordingly and past periods

of cumulative growth in y are forgotten. Are dynamic interaction models of yt appropriate
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in these situations?

Our simulation study (presented in the next section) more deeply examines the properties

of state-dependent DGPs with intermittent periods of non-stationarity. To preview our

results, such excursions usually pose no problem for inference with a dynamic interaction

model. When they do, standard tests for a unit root are useful at detecting the problem.

Unexpected interaction among independent variables

One interesting and subtle implication of state dependence is that independent variables

(such as x and z in equation 1) have interactive effects on the steady state y even in the

absence of a product term between them in the model. That is, the long term marginal

effect of z on y is contingent on the value of x and cannot be read directly off of a coefficient

table. The consequence is that marginal effects for z must be estimated using the steady

state technique above, even though no product term between x and z is present in the model.

Equation 3 indicates that variables that are not interacted with y, which we labeled z in

the previous example, are nevertheless a factor in determining the steady state value of y.

If z changes from zlo to zhi, where ∆z = zhi − zlo, the change in steady state is:

β0 + β2x+ β4zhi
(1− β1 − β3x)

− β0 + β2x+ β4zlo
(1− β1 − β3x)

=
β4∆z

(1− β1 − β3x)
(5)

What this implies is that the long-term marginal effect of z is contingent on the value of the

state dependent variable x—that is, that the effect of a change in z on y depends on the level

of x. In terms of their effects on y, then, z and x are indirectly interactive. The equation

also shows that changes in the steady state are contingent not on specific values of z but on

the magnitude of change in that variable, which we call ∆z. In short, the marginal effect

of z on y depends both on the level of the state dependent variable x, and on the degree of

change in the ordinary variable z. Thus, we should plot the long-term marginal effect for a

fixed change in z at different values of x.
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Figure 4: Long Term Marginal Effect Plot for z with 95% Confidence Interval
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To illustrate the procedure, we continue using the data set and estimated model from

Table 1. Using this information, we estimated the long-term marginal effect by simulating

1000 draws of β from the variance-covariance model, setting ∆z = 1, then calculating the

95% confidence interval for equation 5 for values of x ∈ [−1.5, 1.5]. The result is shown in

Figure 4. As the figure indicates, the long term marginal effect of a change in z on y depends

on the value of xit; larger values of xit are associated with a larger marginal effect of changes

in zit.

Model performance and the consequences of misspecifi-

cation

Based on the previous section, we can already conclude that ignoring state dependence is

substantively harmful. When state dependence is present, the effect of changing independent
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variables—including variables that are not state-dependent—is highly contextual. Further-

more, independent variables have both short-term and long-term effects on the dependent

variable y. Without a properly specified dynamic interaction model, all these subtleties are

lost. The result is that our empirical model may not be able to capture the complexities of

a dynamic theory of political interaction.

In this section, we use simulation analysis to assess: (1) whether an appropriately speci-

fied dynamic interaction model can accurately recover the data-generating process, especially

in the presence of unit-specific effects; (2) the consequences of a likely misspecification; (3)

how an analyst can determine whether state dependence is present; and (4) whether brief

excursions out of stationarity are a problem for modeling state dependent DGPs. First, past

evidence suggests that models that include both a unit-specific intercept and a lagged depen-

dent variable are intrinsically biased, though the bias is negligible in many cases (Wilson and

Butler, 2007). Our simulation evidence shows that our model can correctly recover the data

generating process in both fixed and random effects models when there are enough temporal

observations to work with (T ≥ 20), regardless of the number of units N . Second, we need

to investigate whether the problem of ignoring state dependence is merely one of neglecting

subtlety; it may be that a misspecified model can still accurately predict the dependent

variable yit. Simulations show that this is not the case: a misspecified model is much less

capable of predicting the dependent variable. Third, we investigate methods of detecting

state dependence in a data set. Our simulations confirm that a t-test on the product term is

a reasonable indicator of state dependence, while the Bayesian Information Criterion (BIC)

does even better in this role. Finally, we determine that the dynamic interaction model

is useful for analyzing intermittently non-stationary series. The model breaks down when

these periods of non-stationarity become too long, but standard unit root tests are useful for

determining when this is the case.
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Simulation details

For each simulation, 1000 data sets are generated out of the model:

yit = β0 + β1yi(t−1) + β2xit + β3

(
xityi(t−1)

)
+ β4zit + αi + uit (6)

The resulting simulated data is a time-series cross-section (TSCS). The β1 coefficient on yt−1

and the interaction coefficient β3 are drawn from the uniform distribution between -0.4 and

0.4, while the β2 coefficient on xit and the β4 coefficient on zit are both drawn from the

uniform distribution between -2 and 2. The error term uit is normally distributed with zero

mean and a standard deviation of 3. xit and zit are drawn from the uniform distribution

between −3 and 3. Note that this structure implies that some simulated data sets will be

non-stationary for short periods of large xit; when β1 = β3 = 0.3, for example, the series is

temporarily non-stationary whenever xit ≥ 7/3 ≈ 2.33; we examine this issue more closely

in a later subsection.

Two types of simulation are run. One includes unit-specific effects αi and no common

intercept (β0 = 0); unit effects are drawn from the uniform distribution between -3 and 3. We

systematically vary the number of units N ∈ {10, 20, 50} and the number of time periods

T ∈ {5, 10, 20, 30, 40, 50}. The other type of simulation, a simple time-series with N = 1

and T ∈ {5, 10, 20, 50}, has a common intercept β0 drawn from the uniform distribution

between -3 and 3 and sets all αi = 0. The results from the simple time-series simulations

are all consistent with the results for panel models, and so we concentrate on presenting the

panel results; the time-series results are reported separately in an appendix.

For each of the 1000 data sets, two models are fitted: one with an accurate specification,

and one with a specification that drops only the interaction between xit and yi(t−1). When

unit effects are present, we consider two approaches to capturing them: a random-effects

model, and a simple dummy variable specification. Results were substantively similar for

simulations with and without unit-specific effects except where noted. Thus, we focus on the
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results from simulations with unit-specific effects.

Accurate recovery of the DGP

Our first concern is whether a properly specified model can accurately recover the data

generating process. We begin by assessing a random effects model, which is appropriate

for the simulated DGP because the unit effects are uncorrelated with other independent

variables. Our simulation results for the smallest data sets (N = 10) are depicted in Figure

5; the figure shows the median bias of our 1000 simulations along with a 95% confidence

interval. The simulations reveal that coefficient estimation is unbiased for all coefficients,

even for the very shortest values of T , though estimate variability is considerably reduced

for T ≥ 20. This is good news for our model: when a random effects model is appropriate,

dynamic interaction models can accurately recover the DGP structure from a TSCS data

set.

But random effects models are not always appropriate, and coefficient bias is a special

concern in the presence of a least-squares dummy variable model (Keele and Kelly, 2006;

Wilson and Butler, 2007). Our simulation results for fixed effects models are similar to the

results in Figure 5, except for the lag coefficient. We focus on results for the lag coefficient in

Figure 6, showing results for three different values of N . The simulations indicate that the

bias of the lag coefficient shrinks in increasing T and is negligible for T ≥ 20, but is the same

for different values of N . These results very closely conform to the earlier findings of Judson

and Owen (1999), who investigate dynamic panel models and find that estimates of non-lag

coefficients are generally unbiased and that bias in the lag coefficient diminishes with T .10

Taken as a whole, our results indicate that properly specified dynamic interaction models

can recover the DGP, but are most reliable with enough temporal observations (T ≥ 20) to

allow dynamics to be properly observed. This property of the model makes intuitive sense,

given the discussion of the previous section. State-dependent dynamic systems are associated

10Judson and Owen recommend T ≥ 30, rather than T ≥ 20.
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Figure 5: Simulation Results from a Correctly Specified Random Effects Model, N = 10
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Figure 6: Lag Coefficient Bias in Fixed Effects Models, Simulation Results Varying N and
T
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with subtle, long-term dynamics; the full effects of a change in a variable may not be felt

for many periods into the future. A data set must be “long” enough to see these effects

unfold and model them properly.11 This is especially important when a fixed effects model

is used: “short” data sets will probably result in a biased estimate of the lag coefficient and

subsequently biased marginal effects estimates.

The predictive accuracy of correct and misspecified models

Do properly specified dynamic interaction models outperform models that ignore state-

dependence? To answer this question, we measured the in-sample predictive capability of

models that include a product term
(
xityi(t−1)

)
to those that do not but are otherwise cor-

rectly specified. For each of the 1000 data sets, we calculate the root mean square error of

11This is not universally true for all dynamic panel models; see Keele and Kelly (2006) for details.
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Figure 7: Predictive Performance for Correctly and Incorrectly Specified, RE Models, N = 10
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the estimated model’s prediction:

RMSE =

√√√√ 1

NT

N∑
i=1

T∑
t=1

(yoit − ŷit)
2

where yoit = β0 +β1yi(t−1) +β2xit +β3

(
xityi(t−1)

)
+β4zit +αi, the prediction of the true model

excepting the error term, and ŷit is the estimated model’s prediction of the same quantity.

Figure 7 displays a comparison of the RMSE for random effects models that include the

product term (“correct” models) against those that do not (“misspecified” models).12 As the

figure shows, the consequence of misspecification is poorer performance in predicting the

dependent variable. For all values of T , the product term model outperforms the no-product

term model. Furthermore, while the misspecified model’s predictive performance remains

constant for all levels of T , the correctly specified model with a product term gets better as

T increases (presumably because of more efficient estimates).

It is also informative to examine the RMSE of correctly specified models for different

values of N , as shown in Figure 8. The figure reiterates a lesson from the previous section:

increasing the number of units N does not appreciably improve the performance of a dynamic

12Results are very similar for fixed effect models.
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Figure 8: Predictive Performance of Correctly Specified Dynamic Interaction Models, Vary-
ing N
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interaction model, but increasing T does. Consequently, investigating a state dependent

relationship is inadvisable with data sets shorter than T = 20, regardless of N .

Stationarity revisited

As we discussed above, state-dependent DGPs may become intermittently non-stationary

whenever xit gets large enough to allow (β1 + β3xit) to exceed 1. To determine the inferential

consequences of temporary departures from stationarity, we examined some time series sim-

ulations (with N = 1, T = 200) designed to manipulate how often the stationarity boundary

xt < (1− β2) /β3 is broken. Specifically, we altered the previous simulation parameters to set

the lag coefficient β2 = 0.4 and let the interaction coefficient β3 ∈ {0.1, 0.2, 0.3, 0.4, 0.5}; we

drew xt from the uniform distribution between 1 and 3. Under these simulations, the series

spends progressively more time out of a stationary state as β3 grows; at the highest levels,

the series is non-stationary whenever x ≥ 1.2, about 90% of the time. We also assessed the

resulting series using the augmented Dickey-Fuller and Phillips-Perron unit root tests under

the null hypothesis that the series is non-stationary (as implemented in the tseries package
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in R). 1000 new samples were drawn and analyzed under these new conditions, the results

are shown in Figures 9a and 9b.

As the figures indicate, neither the coefficient accuracy nor the RMSE is substantially

impacted by increasing frequency of excursions outside of stationarity—until β3 = 0.4, when

the RMSE begins to rise. At β = 0.5, the RMSE explodes and the accuracy of β1 and β4

estimates are dramatically decreased. Interestingly, the lag and product term coefficients

continue to be accurately estimated for all values of β3. The Phillps-Perron test increasingly

fails to reject the null of a unit root as β3 rises, and never rejects the null of a unit root (in

favor of the alternative that the series is stationary) for β3 ≥ 0.4. The augmented Dickey-

Fuller follows the same pattern, although rejection rates begin to rise again for extreme

values of β3.

This set of results suggests a strategy for determining whether non-stationarity in a state-

dependent series will hinder inference from a dynamic interaction model. First, passing the

Phillips-Perron test for a unit root appears to be a useful and favorable indicator for model

performance. Second, an analyst can use a model’s estimated lag and interaction coefficients

to conduct a Monte Carlo study tailored to assess model accuracy under the conditions of

the DGP in question. Based on our results, these coefficients should be estimated accurately

enough to assess whether a dynamic interaction model is suitable for the sample at hand.

How can analysts decide whether a relationship is state-dependent?

When state dependence is suspected, the prior subsection shows that including an interac-

tion term between the lagged dependent variable and the relevant independent variable is

essential. As a result, when asking and answering substantive questions, it is important to

have a reliable procedure to determine whether state dependence is present. The statisti-

cal significance of the product term and the Bayesian Information Criterion (BIC) are both

reasonable indicators of state dependence, but the BIC is the best overall performer.

Our analysis is shown in Table 2. To generate this table, we use the simulation framework
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Figure 9: Simulations When Stationarity is Temporarily Violated
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described in the previous section (and using all the same values for key parameters13) to gen-

erate 1000 data sets with N = 10 and T = 20. We then estimate a correctly specified model

and determine whether the p-value on the interaction term (β̂3) is statistically significant (at

α = 0.05, two-tailed). We also estimate a random effects model without an interaction term,

and compare this misspecified model to the model with the product term using the AIC and

the BIC. This set of simulations allows us to assess the false negative rate of each of these

two procedures. To assess their false positive rate, we repeat the simulations for DGPs that

included no interaction term between yit and xit (β3 = 0), examine the statistical signifi-

cance of the product term in a model that includes one, and then compare this product term

model to a no-product-term model with the AIC and BIC. The entire analysis is repeated

for random and fixed effects models.

As Table 2 shows, examining the statistical significance of a product term between yit and

xit has a reasonably low false positive rate (4.1% for RE models, 4.3% for FE models) and an

extremely high true positive rate (over 99% in both cases). The BIC is much more resistant

to false positives (0.1% for RE models, 1.8% for FE models) but slightly less likely to detect

a true positive (the true positive rate is 96.8% for RE models, 99.5% for FE models). The

AIC model has an excessive false positive rate for FE models (15.9%) and in our time-series

simulations without unit effects,14 and hence we do not recommend its use in this context.

On the basis of this evidence, we believe that the BIC is the best test for state dependence,

with the statistical significance of the product term useful as an alternative indicator.

13We bound the absolute value of the product term (β3) to be between 0.1 and 0.4 to ensure a non-zero
level of state dependence.

14See the appendix for more details.
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Table 3: List of Variables (adapted from Geys, 2010, pp. 77-78)

variable description

DV: approval Quarterly average of Gallup Poll respondents expressing
approval of the job the incumbent is doing as president

growth real growth rate of GDP in the current quarter

inflation change in inflation rate between the previous and present
quarter

unemployment current quarter unemployment (annualized)

casualties natural log of war deaths in the prior quarter for the war
indicated

Does economic performance affect U.S. presidential ap-

proval ratings?

Demonstrating the methodological usefulness of a dynamic interaction model is important,

but we think that state dependence is also an important theoretical concept that can enrich

our understanding of substantive issues. To that end, we undertake a replication of a recent

study of influences on U.S. presidential approval by Geys (2010). The data set15 is a time

series of quarterly presidential approval ratings collected by the Gallup polling firm between

1948 and 2008. Key independent variables include measures of present economic conditions

(GDP growth, unemployment rate, and inflation) and the number of war casualties in three

wars that took place during the coverage of the data set; more details about the variables

are listed in Table 3. The presidential approval rating dependent variable passes standard

tests for stationarity.16

Geys’ original specification is replicated in Column 1 of Table 4.17 To this, we add

interaction terms between lagged approval and economic growth (Column 2), unemploy-

15Thanks to Benny Geys for generously providing the original data and analysis scripts for this replication
study.

16The Dickey-Fuller test yields a statistic of −4.113, p ≈ 0.001. The Phillips-Perron test statistic is −4.246,
p ≈ 0.001. A correlogram reveals negligible autocorrelation after ≈ 7 quarters.

17Geys also estimated many other models including additional controls, such as administration dummies
and temporal adjustments for the “honeymoon” period at the beginning of an administration and the period
preceding an election. To maintain the simplicity of our analysis, we omit these complicating factors.
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ment (Column 3), or both (Column 4). The substantive interpretation is straightforward:

present economic conditions can affect the present level of presidential approval, but they

might also affect its trajectory over time. To put it another way, poor economic condi-

tions may cause a faster erosion of past popularity levels (as represented by a decline in

∂ approvalt/∂ approvalt−1). As we argued before, this can happen because high unemploy-

ment and low growth speed the diffusion of negative opinions through the population and

make opposition appeals more effective, making the usual downward slope of presidential

approval ratings even steeper. To model the relationship between economic performance

and the trajectory of presidential support, we interact measures of economic performance

with lagged approval rating.

The BIC most prefers the baseline Model 1,but Models 3 and 4 have a statistically sig-

nificant interaction between lagged approval and unemployment. Additionally, the adjusted

R2 value of Model 3 is the highest (by a small margin). We therefore proceed with a further

analysis of Model 3 as an interesting candidate.

Instantaneous marginal effect of unemployment on presidential ap-

proval

We start by assessing the speed of presidential approval decline by examining the marginal

effect of the lag coefficient at different levels of unemployment; this is plotted in Figure 10.18

As the figure shows, at the very lowest levels of unemployment observed in the data set

(≈ 2.5%), presidential approval barely erodes at all.19 At higher levels of unemployment,

however, presidential approval declines more quickly. At the very highest levels of unemploy-

ment, ≈ 10.5%, only ≈ 70% of existing levels of approval are carried forward into the next

quarter. This does not necessarily mean that approval declines at 30% per quarter, because

18We determined the 90% confidence interval of the marginal effect by drawing 1000 samples from the
asymptotic (normal) distribution of β coefficients, calculating the marginal effect for each draw, and then
plotting the 5th and 95th quantile of this distribution at each level of unemployment.

19Indeed, if unemployment stayed below 3% for a long time, the series may not be stationary. However,
there are only five quarters in the data set with unemployment less than 3%.
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Table 4: State-dependence in Geys (2010)

DV = Gallup Approval Rating 1 2 3 4

lag approval 0.901*** 0.892*** 1.099*** 1.092***
0.026 0.035 0.099 0.098

growth 0.180 0.034 0.188* -0.068
0.092 0.371 0.092 0.375

lag approval*growth 0.003 0.005
0.006 0.007

unemployment -0.723** -0.719** 1.135 1.224
0.256 0.257 0.921 0.924

lag approval*unemployment -0.037* -0.039*
0.018 0.018

inflation (first difference) -1.230* -1.233* -1.333** -1.345**
0.492 0.497 0.465 0.471

Korea casualties -0.442* -0.415 -0.354 -0.304
0.216 0.236 0.213 0.232

Vietnam casualties -0.375** -0.378** -0.377** -0.383**
0.119 0.120 0.119 0.120

Afg/Iraq casualties -0.403* -0.407* -0.354 -0.360
0.204 0.205 0.206 0.207

Constant 8.967*** 9.408*** -0.930 -0.590
2.427 2.797 5.402 5.421

Adj. R2 0.8515 0.8509 0.8533 0.8529

BIC 1439.797 1445.103 1441.282 1446.306

Main entries are OLS coefficients; HC3 robust standard errors in parentheses. N = 231.
***p≤.001, **p≤.01, and *p≤.05 (two-tailed test). Column 1 replicates Column 1 of
Table 2 in Geys (2010).
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Figure 10: The Instantaneous Effect of Presidential Approvalt−1 on Presidential Approvalt
(Column 3 of Table 4)
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other contemporaneous factors in the model also contribute to approval ratings.

Another, symmetrical view of this phenomenon is shown in Figure 11, which shows the

marginal effect of unemployment on presidential approval at different levels of past approval

rating. When past approval is low, unemployment has a comparatively small relationship

with contemporaneous approval. But as past approval gets larger, the negative impact of

unemployment on current presidential approval also becomes larger.

Long term marginal effect of unemployment on presidential ap-

proval

How would high unemployment influence the trajectory of presidential approval over time?

To answer this question, we simulate how presidential approval would change over two years

(eight quarters) under two different unemployment rates, 7% and 8% unemployment. We set

each variable to its in-sample mean, set initial and lagged approval rating at 50%, then pre-

dicted a series of eight quarters of approval ratings. 90% confidence intervals were obtained

by drawing 1000 samples from the asymptotic (normal) distribution of the coefficients of
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Figure 11: The Instantaneous Effect of Unemploymentt on Presidential Approvalt (Column
3 of Table 4)
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Model 3, predicting eight quarters of approval for each draw, and then plotting the 5th and

95th quantiles of the predictions for each quarter. The result is shown in Figure 12a. We

also calculated the difference in trajectories for 7% and 8% unemployment rates and plotted

this difference (and its 90% confidence interval) in Figure 12b.

As the figure shows, even a relatively small (1%) change in unemployment rates results

in a gradually increasing degree of difference in presidential approval. Although a president

facing 7% unemployment is initially only a few percentage points more popular than a

president under 8% unemployment, the difference gradually increases over time such that

after two years we would expect the former to be between 5 and 20 percentage points more

popular than the latter.

We also simulated the trajectory of presidential approval under initially poor (8%) un-

employment that improves after a year (to either 6% or 4% unemployment). The results

are shown in Figure 13. The initially high approval ratings degrade substantially under 8%

unemployment. If the economy cuts unemployment by 2 percentage points—a substantial

improvement in economic performance—approval ratings stabilize at the new, lower level but
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Figure 12: Presidential Approval Trajectory Under 7% and 8% Unemployment (Based on
Model 3 of Table 4)
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do not improve. Only a comparatively miraculous recovery of a 4 percentage point reduction

in unemployment reverses the previous trend and results in increased approval ratings.

Substantively speaking, the result is striking: high unemployment has a cumulative neg-

ative effect on presidential popularity, one that presidents may stave off but are hard-pressed

to reverse.

Latent interaction between unemployment and casualties

The state-dependence of our model creates unanticipated interaction effects among the inde-

pendent variables. To illustrate this, we examine the trajectory of presidential approval at 4%

and 8% unemployment under two scenarios: one in which there have been no Vietnam-related

casualties in the previous quarter, and one in which there have been 1000 such casualties.20

We then calculate the difference between the high-casualty and no-casualty case for each

level of unemployment; the result is depicted in Figure 14.

20For this analysis, casualties from other wars were set at zero for the simulation. Initial approval was
50%.
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Figure 13: Presidential Approval Trajectory 8% Unemployment that Improves to 6% or 4%
Unemployment after 4 Quarters (Based on Model 3 of Table 4)

0 1 2 3 4 5 6 7 8

35
40

45
50

55

simulated approval trajectory
with 90% CI error bars

time (in quarters)

ap
pr

ov
al

 r
at

in
g

8% unemployment
6% unemployment

4% unemployment

Figure 14: Difference in Presidential Approval, With and Without Vietnam Casualties, under
4% and 8% Unemployment
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The figure shows that war casualties harm presidential approval ratings: in the presence

of Vietnam-related causalties, ratings are anywhere from 5 to 25 percentage points lower

at the end of eight quarters than they would have been in the absence of those casualties.

However, the relative effect of war casualties is predicted to be worse when unemployment is

lower. Stated another way, when economic conditions are better, the effect of war weariness

on presidential popularity is larger. This is a product of the latent interaction between

unemployment rates and war casualties that is created by the lag interaction term. Put

simply, the relative penalty of war casualties is greater when unemployment is low than

when it is high, because high unemployment is already so damaging to presidential approval.

This is not to say that war casualties do not make a high unemployment situation worse

for a sitting president: they do. This can be seen in Figure 15, where we plot the predicted

approval ratings for 4% and 8% unemployment under 0 and 1000 Vietnam war casualties.21

According to this plot, suffering 1000 casualties per quarter under 8% unemployment is

considerably worse than suffering 1000 casualties under 4% unemployment. However, under

4% unemployment, moving casualties to 0 results in substantially larger gains in approval

than moving casualties to 0 under 8% unemployment.

The latent interaction between war casualties and unemployment might be substantively

interpretable through the lens of learning and opinion diffusion. When unemployment is low,

prevailing public opinion is likely in the president’s favor and good times tend to put him/her

on a pathway to stable or increasing popularity. War casualties offset these positive pressures,

pushing approval onto an overall downward trajectory as mounting death tolls sour the public

on the conflict and on the president’s leadership. The change is substantial, and growing

over time. By contrast, when unemployment is high, learning and information diffusion are

already working against presidential approval. Voters are getting unfavorable information

about the state of the economy that may well make them more skeptical. Increased war

casualties speed this process further, but the difference is smaller because there are likely

21Other variables are set as in Figure 14.
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Figure 15: Presidential Approval Trajectories With and Without Vietnam Casualties, Low
and High Unemployment (Based on Model 3 of Table 4)
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limits to how fast information can spread and how rapidly voters will update their beliefs

based on new information.

Conclusions and implications

We hope that our paper convinces readers that modeling state dependence is possible, prac-

tical, and substantively illuminating. Our simulations indicate that state dependence can be

identified using appropriately structured tests. The simulations also show that we can ac-

curately model the degree to which empirical relationships are dependent on past outcomes,

enhancing our substantive understanding and improving our ability to predict the dependent

variable. Through our application to the economic determinants of presidential approval, we

uncover evidence for the state dependence of an important political phenomenon: unem-

ployment rates have a cumulative effect on presidential popularity and disproportionately

hurt already-popular presidents. We also find evidence that other influences on presidential

approval are implicitly context-dependent: war casualties will have a smaller effect on presi-

dential approval during times of economic hardship, possibly because anyone supporting the
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president during an economic downturn is ipso facto more ideologically committed.

Consequently, we want political scientists to consider the possibility of state dependence

in their research in the same way that they consider the possibility of hierarchical structure,

endogeneity, or interaction. We therefore conclude by proposing two applications that we find

especially promising. The first concerns the practical consequences of moral condemnation

by the international community.

Do foreign aid donors cut aid to recipients who abuse human rights? The evidence is, at

best, inconsistent (Abrams and Lewis, 1993; Apodaca and Stohl, 1999; Carleton and Stohl,

1987; Cingranelli and Pasquarello, 1985; Neumayer, 2003a,b; Poe, 1992). A recent study

by Nielsen (2012) finds that human rights abuses are punished by donors not allied with

the recipient state, but ignored or even rewarded by allied donors. This finding is consistent

with a larger tradition of research arguing that the donor’s political interests are the primary

determinant of foreign aid (Alesina and Dollar, 2000; Alesina and Weder, 2002; Lebovic, 1988,

2005; Meernik, Kreuger and Poe, 1998; Schraeder, Hook and Taylor, 1998).

This pattern of findings bears on the question of whether international condemnation

for human rights abuses (so-called “naming and shaming”) will have a measurable impact

on the condemned state. One way to approach the question is to accept a key assumption

of the political self-interest approach—that donors give more money to recipients in whom

their political, military, economic, or other interests are intertwined—and then ask whether

donors react differently to human rights abuses by large aid recipients compared to smaller

aid recipients. If so, we would expect foreign aid to constitute a state-dependent dynamic

system wherein larger aid reciepts in the past reduce the negative impact of “naming and

shaming” on present aid levels. We pursue this question in another paper (Esarey and

Demeritt, 2013), and find supportive evidence in both the aggregate aid levels of recipients

and in dyadic aid flows between donors and recipients over time.

Our second suggestion concerns the influence of government partisanship on changes in

government spending. Conventional wisdom holds that“the basic criterion distinguishing the
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left from the right concerns the role of government versus that of the market” (Blais, Blake

and Dion, 1993, 43). Leftist parties traditionally favor large government, while rightist parties

privilege the market and minimize government intervention. As a result, left parties in power

are characterized by high levels of and increases in spending, while right parties in power

spend less and reduce government size. Evidence of a statistical relationship between these

forces is robust, but conditioned by a series of factors including (for example) majoritarian

government and outstanding debt (Blais, Blake and Dion, 1993, 1996; see also Cameron,

1978; Cusack, 1997).

But the influence a party exerts on spending may be conditioned on previous spending

changes, and particularly on the party’s satisfaction with those change. A party in power

will vary spending only if it is dissatisfied with the status quo. Left-leaning governments

will expand only to the extent that previous expansion was low. If previous expansion was

high, left parties may have already implemented or begun to implement their preference for

big government. Similarly, right governments will contract only to the extent that previ-

ous contraction was low. If previous contraction was high, right parties may have already

implemented or begun to implement their preference for small government.

In short, changing government size is an ongoing process, such that a party’s preferences

may be implemented only to the extent that implementation has not already occurred and

hence dissatisfaction with the status quo persists. More generally, the effect of partisan

preferences on government size may depend on the previous change in spending. If so,

then the system is state-dependent; explicitly modeling this feature may reveal that the

government’s ideological commitments are a greater influence on spending than previously

believed.

40



References

Abrams, Burton A. and Kenneth A. Lewis. 1993. “Human Rights and the Distribution of

U.S. Foreign Aid.” Public Choice 77(4):815–821.

Ai, Chunrong and Edward C. Norton. 2003. “Interaction Terms in Logit and Probit Models.”

Economics Letters 80:123–129.

Alesina, Alberto and Beatrice Weder. 2002. “Do Corrupt Governments Receive Less Foreign

Aid?” American Economic Review 92(4):1126–1137.

Alesina, Alberto and David Dollar. 2000. “Who Gives Foreign Aid to Whom and Why?”

Journal of Economic Growth 5(1):33–63.

Apodaca, Clair and Michael Stohl. 1999. “United States Human Rights Policy and Foreign

Assistance.” International Studies Quarterly 43(1):185–198.

Berlemann, Michael and Soren Enkelmann. 2012. “The Economics Determinants of U.S.

Presidential Approval: A Survey.” CESIFO Working Paper No. 3761. URL: http://

papers.ssrn.com/sol3/papers.cfm?abstract_id=2029449.

Blais, Andre, Donald Blake and Stephane Dion. 1993. “Do Parties Make a Difference? Parties

and the Size of Government in Liberal Democracies.”American Journal of Political Science

37(1):40–62.

Blais, Andre, Donald Blake and Stephane Dion. 1996. “Do Parties Make a Difference? A

Reappraisal.” American Journal of Political Science 40(2):514–520.

Brambor, Thomas, William Clark and Matt Golder. 2006. “Understanding Interaction Mod-

els: Improving Empirical Analyses.” Political Analysis 14:63–82.

Braumoeller, Bear. 2004. “Hypothesis Testing and Multiplicative Interaction Terms.” Inter-

national Organization 58:807–820.

41

http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2029449
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2029449


Cameron, David R. 1978. “The Expansion of the Public Economy: A Comparative Analysis.”

American Political Science Review 72(4):1243–1261.

Carleton, David and Michael Stohl. 1987. “The Role of Human Rights in US Foreign

Assistance Policy: A Critique and Reappraisal.” American Journal of Political Science

31(4):1002–1018.

Chatfield, Chris. 2004. The Analysis of Time Series: An Introduction. Sixth ed. Chapman

& Hall/CRC.

Cingranelli, David L. and Thomas E. Pasquarello. 1985. “Human Rights Practices and

the Distribution of U.S. Foreign Aid to Latin American Countries.” American Journal of

Political Science 29(3):539–563.

Cusack, Thomas R. 1997. “Partisan Politics and Public Finance: Changes in Public Spending

in the Industrialized Democracies, 1955-1989.” Public Choice 91:375–395.

De Boef, Suzanna and Luke Keele. 2008. “Taking Time Seriously.” American Journal of

Political Science 52:184–200.

Esarey, Justin and Jacqueline H. R. Demeritt. 2013. “Political Context and the Effectiveness

of ”Naming and Shaming” for Human Rights Abuses.” Working Paper. URL: http://

jee3.web.rice.edu/state-dep-2.pdf.

Franzese, Robert J. 2002. Macroeconomic Policies of Developed Democracies. Cambridge

University Press.

Geys, Benny. 2010. “Wars, Presidents, and Popularity: The Political Cost(s) of War Re-

examined.” Public Opinion Quarterly 74:357–374.

Judson, Ruth A. and Ann L. Owen. 1999. “Estimating dynamic panel data models: A guide

for macroeconomists.” Economics Letters 65:9–15.

42

http://jee3.web.rice.edu/state-dep-2.pdf
http://jee3.web.rice.edu/state-dep-2.pdf


Kam, Cindy D. and Robert J. Franzese. 2007. Modeling and Interpreting Interactive Hy-

potheses in Regression Analysis. University of Michigan Press.

Keele, Luke and Nathan J. Kelly. 2006. “Dynamic Models for Dynamic Theories: The Ins

and Outs of Lagged Dependent Variables.” Political Analysis 14:186–205.

Kucik, Jeffrey and Eric Reinhardt. 2008. “Does Flexibility Promote Cooperation? An Ap-

plication to the Global Trade Regime.” International Organization 62:477–505.

Lebovic, James H. 1988. “National Interests and US Foreign Aid: The Carter and Reagan

Years.” Journal of Peace Research 25(2):115–135.

Lebovic, James H. 2005. “Donor Positioning: Development Assistance from the U.S., Japan,

France, Germany, and Britain.” Political Research Quarterly 58(1):119–126.

MacKuen, Michael. 1983. “Political Drama, Economic Conditions, and the Dynamics of

Presidential Popularity.” American Journal of Political Science 27:165–192.

Meernik, James, Eric L. Kreuger and Steven C. Poe. 1998. “Testing Models of U.S. Foreign

Policy: Foreign Aid During and After the Cold War.” Journal of Politics 60(1):63–85.

Neumayer, Eric. 2003a. “Do Human Rights Matter in Bilateral Aid Allocation? A Quanti-

tative Analysis of 21 Donor Countries.” Social Science Quarterly 84(3):650–666.

Neumayer, Eric. 2003b. “Is Respect for Human Rights Rewarded? An Analysis of Total

Bilateral and Multilateral Aid Flows.” Human Rights Quarterly 25(2):510–527.

Nielsen, Richard. 2012. “Rewarding Human Rights? Selective Aid Sanctions against Repres-

sive States.” International Studies Quarterly Forthcoming.

Poe, Steven C. 1992. “Human Rights and Economic Aid Allocation Under Ronald Reagan

and Jimmy Carter.” American Journal of Political Science 36(1):147–167.

43



Powell, Emilia Justyna and Sara McLaughlin Mitchell. 2007. “The International Court of

Justice and the World’s Three Legal Systems.” Journal of Politics 69:397–415.

Przeworski, Adam, Michael E. Alvarez, Jose Antonio Cheibub and Fernando Limongi. 2002.

Democracy and Development: Political Institutions and Well-Being in the World, 1950-

1990. Cambridge University Press.

Schraeder, Peter J., Steven W. Hook and Bruce Taylor. 1998. “Clarifying the Foreign Aid

Puzzle: A Comparison of American, Japanese, French, and Swedish Aid Flows.” World

Politics 50(2):294–323.

Sing, Ming. 2010. “Explaining Democratic Survival Globally (1946-2002).”Journal of Politics

72:438–455.

Wilson, Sven E. and Daniel M. Butler. 2007. “A Lot More to Do: The Sensitivity of

Time-Series Cross-Section Analyses to Simple Alternative Specifications.” Political Anal-

ysis 15:101–123.

44



Appendix: Simulation results for non-panel time series

To ensure that there was nothing about our Monte Carlo simulation results that applies

specifically or only to panel models, we repeated our analyses using simple time-series models

with N = 1 and T ∈ {5, 10, 20, 50}, a common intercept β0 drawn from the uniform

distribution between -3 and 3, and no unit effects (αi = 0). All other aspects of the simulation

are as described in the main text.

The results of these simulations are shown in Figures 16 and 5. As the figures show, the

results are substantively equivalent to analyses performed on simulated data from panel data

sets with unit effects.

We also repeated our simulation of specification testing in the simple time-series space,

limiting our attention to models where T = 50 and T = 200. As before, we compared the

performance of the AIC, BIC, and the statistical significance of the product term in cases

where state dependence existed and was absent. The results are shown in Table 5. As before,

the panel results of the main text are confirmed, with the particular caution that the AIC is

evidently an unreliable indicator of state dependence (as it provides a level of false positives

well above the 5% threshold with which most researchers are comfortable).
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Figure 16: Simulation Results from a Single (Non-Panel) Time Series
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Figure 17: RMSEs for Correctly and Incorrectly Specified Single Time Series Models

10 20 30 40 50

1.0

1.5

2.0

Correct vs. Misspecified Model Performance
RMSE for Predicting Dependent Variable

T

M
ed

ia
n 

R
M

S
E

 fr
om

 S
im

ul
at

io
ns

Correct Model
Misspecified Model

47



T
ab

le
5:

S
p

ec
ifi

ca
ti

on
T

es
t

P
er

fo
rm

an
ce

fo
r

S
in

gl
e

T
im

e
S
er

ie
s

T
=

50

D
G

P
W

IT
H

S
ta

te
D

ep
en

d
en

ce
D

G
P

W
IT

H
O
U
T

S
ta

te
D

ep
en

d
en

ce

P
ro

d
u
ct

T
er

m
is

S
ta

ti
st

ic
a
ll
y

S
ig

n
ifi

ca
n
t

86
.5

%
5.

7%
A

IC
P

re
fe

rs
M

o
d
el

w
/

P
ro

d
u
ct

T
er

m
92

.2
%

15
.9

%

B
IC

P
re

fe
rs

M
o
d
el

w
/

P
ro

d
u
ct

T
er

m
87

.1
%

6.
1%

T
=

20
0

D
G

P
W

IT
H

S
ta

te
D

ep
en

d
en

ce
D

G
P

W
IT

H
O
U
T

S
ta

te
D

ep
en

d
en

ce

P
ro

d
u
ct

T
er

m
is

S
ta

ti
st

ic
a
ll
y

S
ig

n
ifi

ca
n
t

99
.4

%
4.

2%
A

IC
P

re
fe

rs
M

o
d
el

w
/

P
ro

d
u
ct

T
er

m
10

0%
15

.0
%

B
IC

P
re

fe
rs

M
o
d
el

w
/

P
ro

d
u
ct

T
er

m
98

.8
%

1.
5%

48


