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Abstract

When a researcher suspects that the marginal effect of x on y varies with z, a com-
mon approach is to plot ∂y/∂x at different values of z along with a pointwise confidence
interval generated using the procedure described in Brambor, Clark, and Golder (2006)
in order to assess the magnitude and statistical significance of the relationship. Our
paper makes three contributions. First, we demonstrate that the Brambor, Clark, and
Golder approach produces statistically significant findings when ∂y/∂x = 0 at a rate
that can be many times larger or smaller than the nominal false positive rate of the
test. Second, we introduce the interactionTest software package for R to implement
procedures that allow easy control of the false positive rate. Finally, we illustrate our
findings by replicating an empirical analysis of the relationship between ethnic hetero-
geneity and the number of political parties from Comparative Political Studies.
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Introduction

Much of the recent empirical work in political science1 has recognized that causal rela-

tionships between two variables x and y are often changed—strengthened or weakened—by

contextual variables z. Such a relationship is commonly termed interactive. The substantive

interest in these relationships has been coupled with an ongoing methodological conversa-

tion about the appropriate way to test hypotheses in the presence of interaction. The latest

additions to this literature, particularly King, Tomz and Wittenberg (2000), Ai and Norton

(2003), Braumoeller (2004), Brambor, Clark and Golder (2006), Kam and Franzese (2007),

Berry, DeMeritt and Esarey (2010), and Berry, Golder and Milton (2012), emphasize visually

depicting the marginal effect of x on y at different values of z (with a confidence interval

around that marginal effect) in order to assess whether that marginal effect is statistically

and substantively significant. The statistical significance of a multiplicative interaction term

is seen as neither necessary nor sufficient for determining whether x has an important or

statistically distinguishable relationship with y at a particular value of z. That is, although

a statistically significant product term is sufficient for concluding that ∂y/∂x is different at

different values of z (Kam and Franzese, 2007, p. 50), it cannot tell us whether ∂y/∂x is

statistically distinguishable from zero at any particular value of z.

A paragraph from Brambor, Clark and Golder (2006) summarizes the current state of

the art:

The analyst cannot even infer whether x has a meaningful conditional effect on

y from the magnitude and significance of the coefficient on the interaction term

either. As we showed earlier, it is perfectly possible for the marginal effect of x

on y to be significant for substantively relevant values of the modifying variable

z even if the coefficient on the interaction term is insignificant. Note what this

means. It means that one cannot determine whether a model should include an

1Between 2000 and 2011, 338 articles in the American Political Science Review, the American Journal of
Political Science, and the Journal of Politics tested some form of hypothesis involving interaction.
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interaction term simply by looking at the significance of the coefficient on the

interaction term. Numerous articles ignore this point and drop interaction terms

if this coefficient is insignificant. In doing so, they potentially miss important

conditional relationships between their variables (74).

In short, they recommend including a product term xz in linear models where interaction

between x and z is suspected, then examining a plot of ∂y/∂x and its 95% confidence interval

over the range of z in the sample.2 If the confidence interval does not include zero for any

value of z, one should conclude that x and y are statistically related (at that value of z),

with the substantive significance of the relationship given by the direction and magnitude

of the ∂y/∂x estimate. It is hard to exaggerate the impact that the methodological advice

given in Brambor, Clark and Golder (2006) has had on the discipline: the article has been

cited over 3300 times as of August 2016. Similar advice is given in Braumoeller (2004, pp.

815-818, esp. Figure 2), which has been cited over 660 times in the same time frame.

Our paper makes three contributions to the study of interactive relationships. First, we

highlight a hazard with the Brambor, Clark, and Golder procedure: the reported α-level of

confidence intervals and hypothesis tests constructed using the procedure can be inaccurate

because of a multiple comparison problem (Sidak, 1967; Abdi, 2007). The source of the

problem is that adding an interaction term z to a model like y = β0 + β1x is analogous to

dividing a sample data set into subsamples defined by the value of z, each of which (under

the null hypothesis that ∂y/∂x = 0) has a separate probability of a false positive (i.e.,

falsely rejecting the null hypothesis when the null is true). For example, if z is dichotomous

(z ∈ {0, 1}), estimating a model like y = β0 + β1x + β2z + β3xz is analogous to estimating

y = β0+β1x twice, once for data where z = 0 and once for data where z = 1, with two chances

2This advice is spelled out on pp. 75-76 of Brambor, Clark and Golder (2006), when they describe the
application of their technique to a substantive example: “The solid sloping line in Fig. 3 indicates how
the marginal effect of temporally-proximate presidential elections changes with the number of presidential
candidates. Any particular point on this line is ∂ElectoralParties

∂Proximity = β1 + β3PresidentialCandidates. 95%
confidence intervals around the line allow us to determine the conditions under which presidential elections
have a statistically significant effect on the number of electoral parties—they have a statistically significant
effect whenever the upper and lower bounds of the confidence interval are both above (or below) the zero
line.” We revisit this substantive example in our application section later in the paper.
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for β1 to be found statistically significant by chance. A similar problem is already well-

recognized in the analysis of variance for nominal treatment factors (e.g., Kutner et al., 2004,

Section 19.9). In contrast, the methods that are described in Brambor, Clark and Golder

(2006) construct a pointwise confidence interval (typically using a two-tailed α = 0.05);

“pointwise” indicates that the confidence intervals are constructed for each individual value

of z without considering the joint coverage of the confidence interval for all values of z.

That is, the confidence interval for each value of z assumes a single draw from the sampling

distribution of the marginal effect of interest. As a result, these confidence intervals can

either be too wide or too narrow to conduct the tests that scholars wish to perform:3 plotting

∂y/∂x over values of z and reporting any statistically significant relationship tends to result

in overconfident tests, while plotting ∂y/∂x over z and requiring statistically significant

relationships at multiple values of z tends to result in underconfident tests.4 The latter

scenario may occur when, for example, a theory predicts that ∂y/∂x > 0 for z = 0 and

∂y/∂x < 0 for z = 1 and we try to jointly confirm these predictions in a data set.

Second, we offer researchers guidance on strategies that are effective and ineffective at

controlling the false positive rate when examining interaction relationships. Our primary

recommendation is for researchers to simply be aware that marginal effects plots generated

under a given α could be over- or underconfident, and thus to take a closer look if results

are at the margin of statistical significance. When overconfidence is an issue, researchers

can control the false discovery rate (or FDR) in marginal effects plots by adapting the pro-

cedure of Benjamini and Hochberg (1995);5 we provide code to accomplish this in R in our

3Note that “appropriate” width of a confidence interval is relative to the test with which the interval is
associated. The pointwise 95% CIs constructed by Brambor, Clark and Golder (2006) do include the true
value of any given (∂y/∂x | z = z0) 95% of the time in repeated samples for a fixed z0, as expected. However,
these 95% CIs do not cover all the true values in a set of (∂y/∂x | z ∈ {z0, z1, ..., zk}) 95% of the time; the
CIs are too narrow in this case because they too frequently exclude (∂y/∂x|z) = 0 for at least one value
of z when the null is true (that is, when (∂y/∂x|z) = 0 for all z). They also falsely reject the null too
infrequently in a conjoint test of multiple theoretical predictions. For example, if a theory predicts that
(∂y/∂x|z = 0) > 0 ∧ (∂y/∂x|z = 1) < 0, the null hypothesis that (∂y/∂x|z = 0) ≤ 0 ∨ (∂y/∂x|z = 1) ≥ 0
will be rejected far less than 5% of the time by 95% pointwise confidence intervals when this null is true
(because the CIs are too wide for this purpose).

4We thank an anonymous reviewer for suggesting this phraseology.
5For a variant of this procedure involving assigning differential weights to different kinds of hypotheses,
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new interactionTest package. Researchers can also control the familywise error rate (or

FWER) of these plots using a simple F -test (Kam and Franzese, 2007, pp;. 43-51), although

this procedure is more conservative and less powerful than controlling the FDR. We rule

out one possible solution for overconfidence: researchers cannot solve the problem by con-

ditioning inference on the statistical significance of the interaction term (assessing ∂y/∂x

for multiple z only when the product term indicates interaction in the DGP) because this

procedure results in an excess of false positives.6 In situations where marginal effects plots

with pointwise confidence intervals (like those in Brambor, Clark and Golder (2006)) would

be underconfident, such as when researchers are jointly testing multiple theoretical predic-

tions, a bootstrapping procedure allows researchers to construct marginal effects plots with

confidence intervals that have appropriate coverage. We provide R code for this procedure

in the interactionTest package.

Finally, we demonstrate the application of our recommendations by re-examining Clark

and Golder (2006), one of the first published applications of the hypothesis testing procedures

described in Brambor, Clark and Golder (2006). The authors’ original analysis, published

in Comparative Political Studies, indicates that ethnic heterogeneity increases the number

of political parties only when electoral district magnitude (in number of seats) is sufficiently

large. Our re-analysis indicates that the authors’ claims cannot be supported by a procedure

that sets the FWER at 90%, and are only partially supported by a procedure that sets the

FDR at 90%. The strongest support for the authors’ hypothesis comes from a procedure that

jointly tests the authors’ multiple predictions to achieve maximum power while controlling

the joint false positive rate, illustrating (a) the usefulness of research designs that combine

theory and empirics and (b) the sensitivity of Clark and Golder’s results to pre-specification

of theoretical expectations.

see Spahn and Franco (2015).
6As an example of this procedure, Braumoeller (2004, p. 814) recommends dropping a small and statis-

tically uncertain interaction term in his reanalysis of Schultz (1999).
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Interaction terms and the multiple comparison problem

We begin by considering the following question: when we aim to assess the marginal effect

of x on y (∂y/∂x) at different values of a conditioning variable z, how likely will at least one

marginal effect come up statistically significant by chance alone? In the context of linear

regression, Brambor, Clark and Golder (2006) recommend (i) estimating a model with x, z,

and xz terms, then (ii) plotting the estimated ∂y/∂x from this model for different values of

z along with 95% confidence intervals. If the CIs exclude zero at any z, they conclude that

the evidence rejects the null hypothesis that ∂y/∂x = 0 for this value of z (Brambor, Clark

and Golder, 2006, pp. 75-76). Figure 1 depicts sample plots for continuous and dichotomous

z variables; the 95% confidence interval excludes zero in both examples (for values of z / 4

in the continuous case, and for both z = 0 and 1 in the dichotomous case), and so both

samples can be interpreted as evidence for a statistical relationship between x and y.

Our goal is to assess the false positive rate of this test procedure—that is, the proportion

of the time that this procedure detects a statistically significant ∂y/∂x for at least one value

of z when the null hypothesis that (∂y/∂x|z) = 0 for all z is true. If the false positive

rate is greater than the nominal size of the test, α, then the procedure is overconfident:

the confidence interval covers (∂y/∂x|z) = 0 for all z less than (1 − α) proportion of the

time when the null is true. If the false positive rate is less than α, then the procedure is

underconfident: the confidence interval could be narrower while preserving its property of

covering (∂y/∂x|z) = 0 for all z with probability (1− α) when this null is true. In the case

of the Brambor, Clark and Golder (2006) procedure, the question is whether the 95% CIs in

Figure 1 exclude zero for at least one value of z more or less than 5% of the time under the

null hypothesis that (∂y/∂x|z) = 0 for all values of z.

As most applied researchers know, when a t-test is conducted—e.g., for a coefficient or

marginal effect in a linear regression model—the α level of that t-test (which is shorthand

for the size of that test) is only valid for a single t-test conducted on a single coefficient
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or marginal effect.7 It is not valid for simultaneously testing the statistical significance of

multiple coefficients. Consider the example of a simple linear model:

E[y|x1, ..., xk] = ŷ =
k∑

i=1

β̂ixi

If a researcher conducts two t-tests on two different β coefficients, there is usually a greater

than 5% chance that either or both of them comes up statistically significant by chance alone

when α = 0.05. In fact, if a researcher enters k variables that have no relationship to the

dependent variable into a regression, the probability that at least one of them comes up

significant (in statistically independent tests) is:

Pr(at least one false positive) = 1− Pr (no false positives)

= 1−
k∏

i=1

(
1− Pr

(
β̂i is st. sig.|βi = 0

))
= 1− (1− α)k

so if the researcher tries five t-tests on five irrelevant variables, the probability that at least

one of them will be statistically significant is ≈ 22.6%, not 5%. This is an instance of the

multiple comparison problem; the problem is associated with a long literature in applied

statistics (Lehmann, 1957a,b; Holm, 1979; Hochberg, 1988; Rom, 1990; Shaffer, 1995).

The same logic applies to testing one irrelevant variable in k different samples. Indeed, the

canonical justification for frequentist hypothesis testing involves determining the sampling

distribution of the test statistic, then calculating the probability that a particular value of

the statistic will be generated by a sample of data produced when the null hypothesis of the

test is true. Thus, if a researcher takes a particular sample data set and randomly divides it

into k subsamples, the probability of finding a statistically significant effect in at least one

of these subsamples by chance is also 1− (1− α)k when the null of no relationship is true.

7Incidentally, this statement is also true for a test for the statistical significance of the product term
coefficient in a statistical model with interaction.
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Interaction terms create a multiple comparison problem: the case

of a dichotomous interaction variable

Interacting two variables in a linear regression model effectively divides a sample into sub-

samples, thus creating the multiple comparison problem described above. This is a well-

recognized problem in the context of analysis of variance, where textbooks recommend mul-

tiple comparison adjustment when examining the marginal effect of one treatment condition

whose effect is moderated by another treatment (e.g., Kutner et al., 2004, Section 19.9). The

simplest and most straightforward example is a linear model with a continuous independent

variable x interacted with a dichotomous independent variable z ∈ {0, 1}:

E[y|x, z] = ŷ = β̂0 + β̂xx+ β̂zz + β̂xzxz (1)

A researcher wants to know whether x has a statistically detectable relationship with y, as

measured by the marginal effect of x on E[y|x, z] from model (1): ∂ŷ/∂x. Let M̂Ex be

shorthand notation for ∂ŷ/∂x and M̂E
z0

x be shorthand notation for (∂ŷ/∂x|z = z0), where

z0 is any possible value of z. Because x is interacted with z, this means that the researcher

needs to calculate confidence intervals for two quantities:

(
∂ŷ

∂x
|z = 0

)
= M̂E

0

x = β̂x (2)(
∂ŷ

∂x
|z = 1

)
= M̂E

1

x = β̂x + β̂xz (3)

These (pointwise) confidence intervals can be created by doing any of the following: (i)

by analytically calculating var
(
M̂E

0

x

)
and var

(
M̂E

1

x

)
using the asymptotically normal

distribution of β̂ and the variance-covariance matrix of the estimate, (ii) by simulating draws

of β̂ out of this distribution and constructing simulated confidence intervals of (2) and (3), or

(iii) by bootstrapping estimates of β̂ via repeated resampling of the data set and constructing

confidence intervals using the resulting β̂ estimates.
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Common practice, and the practice recommended by Brambor, Clark and Golder (2006),

is to report the estimated statistical and substantive significance of the relationship between

x and y at all values of the interaction variable z. Unfortunately, the practice inflates the

probability of finding at least one statistically significant M̂E
z0

x . A model with a dichotomous

interaction term creates two significance tests in each of two subsamples, one for which z = 0

and one for which z = 1. This means that the probability that at least one statistically

significant M̂E
z0

x will be found and reported under the null hypothesis that ME0
x = ME1

x = 0

is:

Pr(false positive)

= Pr
[(
M̂E

0

x is st. sig.|ME0
x = 0

)
∨
(
M̂E

1

x is st. sig.|ME1
x = 0

)]
= 1− Pr

[
¬
((
M̂E

0

x is st. sig.|ME0
x = 0

)
∨
(
M̂E

1

x is st. sig.|ME1
x = 0

))]
= 1− Pr

[(
M̂E

0

x is not st. sig.|ME0
x = 0

)
∧
(
M̂E

1

x is not st. sig.|ME1
x = 0

)]

If the two marginal effects (and their associated statistical significance tests) in the second

term are unrelated, as when the sample is split into two based on the value of z and a

regression separately estimated on each subsample, then we can rewrite this as:

Pr (false positive)

= 1−
(

Pr
(
M̂E

0

x is not st. sig.|ME0
x = 0

)
∗ Pr

(
M̂E

1

x is not st. sig.|ME1
x = 0

))

where MEz0
x is the true value of ∂y/∂x when z = z0. If the test for each individual marginal

effect has size α, this finally reduces to:

Pr(false positive) = 1− (1− α)2 (4)

The problem is immediately evident: the probability of accidentally finding at least one

statistically significant M̂E
z0

x is no longer equal to α. For a conventional two-tailed α = 0.05,

this means there is a 1 − (1 − 0.05)2 = 9.75% chance of concluding that at least one of the
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marginal effects is statistically significant even when ME0
x = ME1

x = 0. Stated another

way, the test is less conservative than indicated by α. The problem is even worse for a

larger number of discrete interactions; if z has three categories, for example, there is a

1− (1− 0.05)3 ≈ 14.26% chance of a false positive in this scenario.

To confirm this result, we conduct a simulation analysis to assess the false positive rate for

a linear regression model. For each of 10,000 simulations, 1,000 observations of a continuous

dependent variable y are drawn from a linear model:

y = 0.2 + u

where u ∼ Φ(0, 1). Covariates x and z are independently drawn from the uniform distribution

between 0 and 1, with z dichotomized by rounding to the nearest integer. By construction,

neither covariate has any relationship to y; that is, the null hypothesis that MEz0
x = MEx0

z =

0 is correct for all values of z0 and x0. We then estimate a linear regression of the form:

ŷ = β̂0 + β̂1x+ β̂2z + β̂pxz

and calculate the predicted marginal effect M̂E
z0

x for the model when z = 0 and 1.

The statistical significance of the marginal effects M̂E
z0

x is assessed in three different

ways. First, we use the appropriate analytic formula to calculate the variance of M̂E
z0

x using

the variance-covariance matrix of the estimated regression; this is:

var
(
M̂E

z0

x

)
= var

(
β̂x

)
+ (z0)

2 var
(
β̂xz

)
+ 2z0 cov

(
β̂x, β̂xz

)

This enables us to calculate a pointwise 95% confidence interval using the critical t-statistic

for a two-tailed α = 0.05 test in the usual way. Second, we simulate 1000 draws out of

the asymptotic (multivariate normal) distribution of β̂ for the regression, calculate M̂E
z0

x at

z0 = 0 and 1 for each draw, and select the 2.5th and 97.5th percentiles of those calculations

10



to form a 95% confidence interval. Finally, we construct 1000 bootstrap samples (with

replacement) for each data set, then use the bootstrapped samples to construct simulated

95% confidence intervals.

The results for a model with a dichotomous z variable are shown in Table 1. The table

shows that, no matter how we calculate the standard error of the marginal effect, the prob-

ability of a false positive (Type I error) is considerably higher than the nominal α = 0.05

and close to the theoretical expectation for statistically independent tests.

Continuous interaction variables

The multiple comparison problem and resulting overconfidence in hypothesis tests for marginal

effects can be worsened when a linear model interacts a continuous independent variable x

with a z variable that has more than two categories. For example, an interaction term

between x and a continuous variable z implicitly cuts a given sample into many small sub-

samples for each value of z in the range of the sample. By subdividing the sample further,

we create a larger number of chances for a false positive.

To illustrate the potential problem with overconfidence in models with more categories

of z, we repeat our Monte Carlo simulation with statistically independent x and z variables

using a three-category z ∈ {0, 1, 2} (where each value is equally probable) and a continuous

z ∈ [0, 1] (drawn from the uniform distribution) instead of a discrete z. Bootstrapping is

computationally intensive and yields no different results than the other two processes when

z is dichotomous; we therefore only assess simulated and analytic standard errors for the 3

category and continuous z cases. The results are shown in Table 1.

As before, the observed probability of a Type I error is far from the nominal α probability

of the test. A continuous z tends to have a higher false positive rate than a dichotomous

z (≈ 14% compared to ≈ 10% under equivalent conditions), and roughly equivalent to a

three-category z.

11



Table 1: Overconfidence in Interaction Effect Standard Errors of MEx = ∂y/∂x*

# of Calculation
z categories Method Type I Error

2 categories

Simulated SE 9.86%
Analytic SE 9.45%

Bootstrap SE 10.33%
Theoretical 9.75%

3 categories
Simulated SE 14.20%
Analytic SE 13.93%
Theoretical 14.26%

continuous
Simulated SE 14.51%
Analytic SE 13.75%

*The reported number in the“Type I Error”column is the percentage of the time that a statistically
significant (two-tailed, α = 0.05) marginal effect ∂y/∂x for any z is detected in a model of the DGP
from equation (1) when βx = βz = βxz = 0. Type I error rates calculated via simulated, analytic,
or bootstrapped SEs using 10,000 simulated data sets with 1,000 observations each from the DGP
y = 0.2 + u, u ∼ Φ(0, 1); x ∼ U [0, 1], z ∈ {0, 1} with equal probability (2 categories), z ∈ {0, 1, 2}
with equal probability (3 categories), and z ∼ U [0, 1] (continuous). For analytic SEs, se

(
M̂E

z0
x

)
=√

var
(
β̂x

)
+ (z0)

2 var
(
β̂xz

)
+ 2z0cov

(
β̂x, β̂xz

)
and the 95% CI is

(
β̂x + β̂xzz0

)
±1.96∗se

(
M̂E

z0
x

)
.

Simulated SEs are created using 1000 draws out of the asymptotic (normal) distribution of β̂ for

the regression, calculating M̂E
z0
x for each draw, and selecting the 2.5th and 97.5th percentiles of

those calculations to form a 95% confidence interval. Bootstrapped SEs are created using 1000
bootstrap samples (with replacement) for each data set, where the bootstrapped samples are used
to construct simulated 95% confidence intervals. Theoretical false positive rates for discrete z are
created using expected error rates for independent tests from the nominal α value of the test as
described in equation (4).
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Statistical interdependence between marginal effects estimates

In the section above, we assumed that marginal effects estimates (and related statistical

significance tests) at different values of z are uncorrelated. But if the significance tests of

M̂E
0

x and M̂E
1

x are related when z is dichotomous, we would expect correlation between

the statistical significance of marginal effects estimates when (for example) x and z are

themselves correlated, or when βx and βxz are stochastic and correlated. In this case, the

probability of a false positive result is:

Pr (false positive)

= 1− Pr
[(
M̂E

0

x is not st. sig.|ME0
x = 0

)
∧
(
M̂E

1

x is not st. sig.|ME1
x = 0

)]

If
(
M̂E

0

x is not st. sig.|ME0
x = 0

)
and

(
M̂E

1

x is not st. sig.|ME1
x = 0

)
are perfectly corre-

lated, then we expect the joint probability that both occur to be equal to either individual

probability that one occurs (1 − α) and therefore Pr (false positive) = 1 − (1− α) = α. In

that case, the individual tests have correct size. As their correlation falls, the joint probabil-

ity that both occur falls below (1− α) as the proportion of the time that one occurs without

the other rises.8

To illustrate the effect of correlated x and z on marginal effects estimates, Table 2 shows

the result of repeating the simulations of Table 1 with varying correlation between the x

and z variables. When z is dichotomous,9 it appears that correlation between x and z is

not influential on the false positive rate for MEx; the false positive rate is near 9.8% (our

theoretical expectation from Table 1) for all values of ρxz. This may be because the dichoto-

mous nature of z creates a situation analogous to a split sample regression, wherein M̂E
1

x is

8In the event that the statistical significance of one marginal effect were negatively associated with the

other—that is, if M̂E
0

x were less likely to be significant when M̂E
1

x is significant and vice versa—then the
probability of a false positive could be even higher than that reported in Table 1. We believe that this is
unlikely to occur in cases when β is fixed, as our results in Table 2 indicate that a wide range of positive
and negative correlation between x and z does not produce false positive rates that exceed those of Table 1.

9Correlation between the continuous x and dichotomous z was created by first drawing x and a continuous

z? from a multivariate normal with mean zero and VCV =

[
1 ρ
ρ 1

]
, then choosing z = 1 with probability

Φ(z?|µ = 0, σ = 0.5).
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Table 2: Overconfidence in Interaction Effect Standard Errors of MEx = ∂y/∂x*

Type I Error (Analytic SE)

continuous z

ρxz binary z uniform normal

0.99 9.91% 7.29% 5.28%
0.9 9.26% 11.80% 6.42%
0.5 9.81% 14.06% 8.42%
0.2 9.78% 13.82% 8.87%
0 9.83% 13.69% 8.68%

-0.2 10.0% 13.60% 8.39%
-0.5 10.0% 13.81% 8.22%
-0.9 9.75% 11.57% 6.52%
-0.99 9.73% 7.61% 5.01%

*The reported number in the“Type I Error”column is the percentage of the time that a statistically
significant (two-tailed, α = 0.05) marginal effect ∂y/∂x for any z is detected in a model of the DGP
from equation (1) when βx = βz = βxz = 0. Type I error rates are determined using 10,000
simulated data sets with 1,000 observations each from the DGP y = 0.2 + u, u ∼ Φ(0, 1). When z
is continuous, x and z are either (a) drawn from a multivariate distribution with uniform marginals

and a multivariate normal copula with mean zero and VCV =

[
1 ρ
ρ 1

]
(column “uniform”), or

(b) drawn from the bivariate normal distribution with mean zero and VCV =

[
1 ρ
ρ 1

]
(column

“normal”). When z is binary, x and z? are drawn from the bivariate normal with mean zero and

VCV =

[
1 ρ
ρ 1

]
and Pr(z = 1) = Φ(z?|µ = 0, σ = 0.5). Analytic SEs are used to determine

statistical significance: se
(
M̂E

z0
x

)
=

√
var
(
β̂x

)
+ (z0)

2 var
(
β̂xz

)
+ 2z0cov

(
β̂x, β̂xz

)
and the 95%

CI is
(
β̂x + β̂xzz0

)
± 1.96 ∗ se

(
M̂E

z0
x

)
.
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quasi-independent from M̂E
0

x despite the correlation between x and z. This interpretation is

supported by the observed correlation between t-statistics for M̂E
0

x and M̂E
1

x in our simula-

tion, which never exceeds 0.015 even when |ρxz| ≥ 0.9. We conclude that it may be possible

for M̂E
0

x and M̂E
1

x to be correlated in a way that brings the false positive rate closer to α,

but that simple collinearity between x and a dichotomous z will not produce this outcome.

The results with a continuous z are more interesting. We look at two cases: one where

x and z are drawn from a multivariate distribution with uniform marginal densities and a

normal copula10 (in the column labeled “uniform”), and one where x and z are drawn from

a multivariate normal11 distribution (in the column labeled “normal”). We see that the false

positive rate indeed approaches the nominal α = 5% for extreme correlations between x and

z. Furthermore, we also see that the false positive rate when ρxz = 0 is about 8.7%; this is

lower than the 13.69% false positive rate that we see in the uniformly distributed case (which

is comparable to the 14.51% false positive rate that we observed in Table 1). It therefore

appears that the false positive rate for marginal effects can depend on the distribution of x

and z.12

Underconfidence is possible for conjoint tests of theo-

retical predictions

The analysis in the prior section asks how often we expect to see ∂ŷ/∂x turn up statistically

significant by chance when our analysis allows this marginal effect to vary with a conditioning

variable z. Although we believe this is typically the right criterion against which to judge

a significance testing regime, there are situations where it is a poor fit. For example, a

10This is accomplished using rCopula in the R package copula. The normal copula function has mean

zero and VCV =

[
1 ρ
ρ 1

]
.

11The multivariate normal density has mean zero, VCV =

[
1 ρ
ρ 1

]
.

12Of course, when the correlation between x and z gets very large (|ρ| > 0.9), the problems that accompany
severe multicollinearity may also appear (e.g., inefficiency); we do not study these problems in detail.
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theory with interaction relationships often makes multiple predictions; it may predict that

∂y/∂x < 0 when z = 0 and ∂y/∂x > 0 when z = 1. Such a theory is falsified if either

prediction is not confirmed; the null hypothesis is that either or both propositions are false,

(∂y/∂x|z = 0) ≥ 0 ∨ (∂y/∂x|z = 1) ≤ 0. This situation creates a different kind of multiple

comparison problem: if we use a significance test with size α on each subsample (one where

z = 0 and one where z = 1), the joint probability that both predictions are simultaneously

confirmed due to chance is much smaller than α and the resulting confidence intervals of the

Brambor, Clark and Golder (2006) procedure are too wide for this test. For example, in the

situation noted above, 90% confidence intervals (corresponding to α = 0.05 for a one-tailed

test) will not include both (∂y/∂x|z = 0) ≥ 0 and (∂y/∂x|z = 1) ≤ 0 far less than 5% of the

time when both are true. In this case, a researcher can achieve greater power to detect true

positives without losing control over size by reducing the α of the individual tests.

Dichotomous interaction variable

Consider the model of equation (1), where a continuous independent variable x is interacted

with a dichotomous independent variable z ∈ {0, 1}. A researcher might hypothesize that x

has a statistically significant and positive relationship with y when z = 0, but no statistically

significant relationship when z = 1. That researcher will probably go on to plot the marginal

effects of equations (2) and (3). If the researcher’s theory is correct, then (2) should be

statistically significant and (3) should not be.13 If our default expectation is that all marginal

13This procedure raises an interesting and (to our knowledge) still debatable question: how does one
test for the absence of a (meaningful) relationship between x and y at a particular value of z? We have
phrased our examples in terms of expecting statistically significant relationships (or not), but a researcher
will likely find zero in a 95% CI considerably more than 5% of the time even when the marginal effect 6= 0
(i.e., the size of the test will be larger than α). Moreover, a small but non-zero marginal effect could still
qualify as the absence of a meaningful relationship. Alternative procedures have been proposed, but are
not yet common practice (e.g., Rainey, 2014). We speculate that a researcher should properly test these
hypotheses by specifying a range of MEz

x consistent with “no meaningful relationship” and then determining
whether the 95% CI intersects this range; this is the proposal of Rainey (2014). We assess the (somewhat
unsatisfactory) status quo of checking whether 0 is contained in the 95% CI; the major consequence is that
hypothesizing MEz

x is not substantively meaningful for some z will not boost the power of a hypothesis-
testing procedure as much as it might. The size is already too small for conjoint hypothesis tests of this
type, and so overconfidence is not a concern despite the excessive size of the individual test. In our corrected
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effects are nonexistent (ME0
x = ME1

x = 0), what is the probability that the researcher will

find a positive, statistically significant marginal effect for equation (2) and no statistically

significant effect for equation (3) under these conditions?14 When the statistical significance

tests for M̂E
0

x and M̂E
1

x are statistically independent and α = 0.05 for a one-tailed test, this

probability must be:

Pr (false positive)

= Pr
[(
M̂E

0

x is stat. sig. and > 0|ME0
x = 0

)
∧
(
M̂E

1

x is not stat. sig.|ME1
x = 0

)]
= Pr

(
M̂E

0

x is stat. sig. and > 0|ME0
x = 0

)
∗ Pr

(
M̂E

1

x is not stat. sig.|ME1
x = 0

)
= α (1− 2α)

procedure, the size of the test is numerically controlled and therefore correctly set at α. See Suggestion 2 in
the next section for more details of our corrected procedure.

14For this theory’s alternative hypothesis:

ME0
x > 0 ∧ ME1

x = 0

the appropriate null hypothesis is:
ME0

x ≤ 0 ∨ ME1
x 6= 0

We instead propose to assume a different default expectation when calculating the probability of a false
positive:

ME0
x = ME1

x = 0

We make this assumption because this corresponds to the default expectation of “no relationship” that most
political scientists bring to a study. Using the appropriate null hypothesis as our baseline would make our
point even stronger, as then the probability of a false positive would then be:

α(1− β)

where β is the power of a test to reject the point null ME1
x = 0, typically much higher than α. But calculating

β requires us to make assumptions about the probability distribution of a marginal effect’s magnitude when
it is not equal to zero; using the default expectation of MEz

x = 0 for all values of z allows us to avoid making
such restrictive and complicating assumptions. A uniform expectation of zero effects is also consistent with a
proper null hypothesis for testing multiple directional hypotheses; for example, when testing the alternative
hypothesis that:

ME0
x > 0 ∧ ME1

x < 0

the matching appropriate null hypothesis is:

ME0
x ≤ 0 ∧ ME1

x ≥ 0

and the frequentist supremum probability of a false positive is:

Pr
[(
M̂E

0

x is stat. sig. and > 0|ME0
x = 0

)
∧
(
M̂E

1

x is stat. sig. and < 0|ME1
x = 0

)]
as shown in the text and calculated in the tables.
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= 0.05 ∗ 0.90

= 0.045

That is, the probability of finding results that match the researcher’s suite of predictions

when both marginal effects are false is 4.5%, a slightly smaller probability than that implied

by α. In short, the α level is too conservative. Setting α ≈ 0.0564 yields a 5% false positive

rate for this set of predictions when ME0
x = ME1

x = 0.

The situation is even better if a researcher hypothesizes that ME0
x > 0 and ME1

x < 0.

In this case, when the statistical significance tests for M̂E
0

x and M̂E
1

x are independent

and we conduct a one-tailed test where α = 0.05 with a corresponding null hypothesis of

[ME0
x ≤ 0 ∨ ME1

x ≥ 0], the largest possible probability of a false positive corresponding to

the set of possible of null marginal effect values is:

sup Pr(false positive|ME0
x ≤ 0 ∨ ME1

x ≥ 0)

= Pr
[(
M̂E

0

x is stat. sig. and > 0|ME0
x = 0

)
∧
(
M̂E

1

x is stat. sig. and < 0|ME1
x = 0

)]
= Pr

(
M̂E

0

x is stat. sig. and > 0|ME0
x = 0

)
∗ Pr

(
M̂E

1

x is stat. sig. and < 0|ME1
x = 0

)
= α2 = 0.052 = 0.0025

That is, the largest probability of a false positive for this theory is one-quarter of one percent

(0.25%), an extremely conservative test! Setting a one-tailed α =
√

0.05 ≈ .224 corresponds

to a false positive rate of 5%.

Perhaps the most important finding is that the underconfidence of the test—the degree

to which the nominal α is larger than the actual probability of a false positive—is a function

of the pattern of predictions being tested. This means that some theories are harder to

“confirm” with evidence than others under a fixed α, and therefore the Brambor, Clark and

Golder (2006) method for assessing how compatible a theory is with empirical evidence does

not treat all theories equally.
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Continuous interaction variable

The underconfidence problem can be more or less severe (compared to the dichotomous case)

when z is continuous, depending on the pattern of predictions being tested. To determine

the false positive rate when z is continuous, we ran the Monte Carlo simulation from Table

1 under a default expectation that all marginal effects were nonexistent (βx = βz = βxz = 0)

and checked for statistically significant marginal effects that matched a specified pattern of

theoretical predictions using a two-tailed test, α = 0.05. These results (along with simula-

tions for binary z for comparison) are shown in Table 3. All the simulated false positive rates

are smaller than the 5% nominal α, and all but one are smaller than the 2.5% one-tailed α to

which a directional prediction corresponds. The degree of the test’s underconfidence varies

according to the pattern of predictions.

Thorough testing of possible hypotheses: underconfidence or over-

confidence?

The tension between over- and underconfidence of empirical results is illustrated in a recent

paper by Berry, Golder and Milton (2012) in the Journal of Politics. In that paper, Berry,

Golder and Milton (2012) (hereafter BGM) recommend thoroughly testing all of the possible

marginal effects implied by a statistical model. For a model like equation (1), that means

looking not only at ∂y/∂x at different values of z, but also at ∂y/∂z at different values of x.

Their reasoning is that ignoring the interaction between ∂y/∂z and x allows researchers to

ignore implications of a theory that may be falsified by evidence:

...the failure of scholars to provide a second hypothesis about how the marginal

effect of z is conditional on the value of x, together with the corresponding

marginal effect plot, means that scholars often subject their conditional theories

to substantially weaker empirical tests than their data allow (653).

If BGM are describing holistic testing of a particular theory with a large number of predic-
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Table 3: Underconfidence in Confirmation of Multiple Predictions with Interaction Effects*

Monte Carlo
Predictions assessed z type Type I Error

MEz
x st. insig. | z = 0, MEz

x < 0 | z = 1 binary 2.25%

MEz
x > 0 | z = 0, MEz

x < 0 | z = 1 binary 0.07%

MEz
x st. insig. | z < 0.5, MEz

x < 0 | z ≥ 0.5 continuous 2.81%

MEz
x > 0 | z < 0.5, MEz

x < 0 | z ≥ 0.5 continuous 0.49%

MEz
x > 0 | z < 0.5, MEz

x < 0 | z ≥ 0.5,
continuous 0.34%

MEx
z > 0 | x < 0.5, MEx

z < 0 | x ≥ 0.5

MEz
x > 0 | z < 0.5, MEz

x < 0 | z ≥ 0.5,
continuous 0.40%

MEx
z < 0 | x ∈ (−∞,∞)

*The “predictions assessed” column indicates how many distinct theoretical predictions must be
matched by statistically significant findings in a sample data set in order to conclude that the
predictions are empirically consistent with the evidence. The “z type” column indicates whether z
is binary (1 or 0) or continuous (∈ [0, 1]). The“Type I Error”column indicates the proportion of the
time that the assessed predictions are matched and statistically significant (two-tailed, α = 0.05,
equivalent to a one-tailed test with α = 0.025 for directional predictions) in a model of the DGP
from equation (1) when βx = βz = βxz = 0. Monte Carlo Type I errors are calculated using 10,000
simulated data sets with 1,000 observations each from the DGP y = 0.2 + u, u ∼ Φ(0, 1). z and
x are independently drawn from U [0, 1] when z is continuous; when z is binary, it is drawn from
{0, 1} with equal probability and independently of x. Standard errors are calculated analytically:

se
(
M̂E

z0
x

)
=

√
var
(
β̂x

)
+ (z0)

2 var
(
β̂xz

)
+ 2z0cov

(
β̂x, β̂xz

)
.
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tions, then we believe that our analysis tends to support their argument. As we show above,

making multiple predictions about ∂y/∂x at different values of z lowers the chance of a false

positive under the standard hypothesis testing regime. The false positive rate is even lower

if we holistically test a theory using multiple predictions about both ∂y/∂x and ∂y/∂z.

However, it is vital to note that following BGM’s suggestion will also make it more likely

that at least one marginal effect will appear as statistically significant by chance alone. The

reason for this is relatively straightforward: testing a larger number of hypotheses means

multiplying the risk of a single false discovery. In short, we contend that BGM are correct

when testing a single theory by examining its multiple predictions as a whole, but caution

that analyses that report any statistically significant findings separately could be made much

more susceptible to false positives by this procedure.

What now? Determining and controlling the false posi-

tive rate for tests of interaction

The goal of this paper is evolutionary, not revolutionary. We do not argue for a fundamental

change in the way that we test hypotheses about marginal effects estimated in an interaction

model—viz., by calculating estimates and confidence intervals, and graphically assessing

them—but we do believe that there is room to improve the interpretation of these tests.

Specifically, we believe that the confidence intervals that researchers report should reflect an

intentional choice. We suggest three best practices to help political scientists achieve this

goal.
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Suggestion 1: do not condition inference on the interaction term,

as it does not solve the multiple comparison problem

A researcher’s first inclination might be to fight the possibility of overconfidence by condi-

tioning inference on the statistical significance of the interaction term. That is, for the case

when z is binary:

1. If β̂xz is statistically significant: calculate M̂E
0

x = β̂x and M̂E
1

x = β̂x+β̂xz and interpret

the statistical significance of each effect using the relevant 95% CI.

2. If β̂xz is not statistically significant: drop xz from the model, re-estimate the model,

calculate M̂E
0

x = M̂E
1

x = β̂′x, and base acceptance or rejection of the null (that

MEx = 0) on the statistical significance of β̂′x

Braumoeller (2004, p. 814), one of the foundational pieces in the political science literature

concerning the analysis of interacted relationships, uses this procedure in reanalyzing work

originally published by Schultz (1999). However, this procedure results in an excess of false

positives for M̂Ex. The reason is that a multiple comparison problem remains: the procedure

allows two chances to conclude that ∂y/∂x 6= 0, one for a model that includes xz and one

for a model that does not.

Monte Carlo simulations reveal that the overconfidence problem with this procedure is

substantively meaningful. We repeated the analysis of Table 1 with a binary z ∈ {0, 1} under

the null hypothesis (that (∂y/∂x|z0) = 0 for all z), conditioning inference on the statistical

significance of the interaction term. This procedure results in a 8.17% false positive rate

when α = 0.05 (two-tailed); the false positive rate is 9.60% when z is continuous.15 This is

less overconfident than the Brambor, Clark and Golder (2006) procedure using M̂Ex only,

which resulted in ≈ 10% false positive rates, but still larger than the advertised α value.

Therefore, we cannot recommend this practice as a way of correcting the overconfidence

problem.

15These numbers are calculated using simulation-based standard errors, as described in Table 1.
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Suggestion 2: use tests designed to minimize false discoveries and

maximize power

In cases where a researcher believes that the over- or underconfidence of traditional hypoth-

esis test procedures may be decisive to a result (i.e., when results are at the margin of some

threshold for statistical significance), s/he can use an alternative test procedure in order

to control the probability of a false positive (when overconfidence is a potential problem)

or false disconfirmation of a theory that makes multiple predictions (when underconfidence

is the relevant threat). We describe two separate test procedures, depending on whether

the researcher believes overconfidence or underconfidence to be the likely problem. In this

section, we will discuss each procedure in turn. In brief, for overconfidence we recommend

adapting the Benjamini and Hochberg (1995) procedure to control the false discovery rate.

For underconfidence, we suggest finding a critical t-statistic that produces a specified joint

false positive rate using a nonparametric bootstrapping technique. Both of these procedures

can be implemented using our R library, interactionTest.

Overconfidence corrections for estimated marginal effects

When a multiple comparison problem creates the danger of excess false discoveries, the liter-

ature supports two broad approaches to the problem. The first approach involves controlling

the false discovery rate (FDR), or the number of rejected null hypotheses that are false as a

proportion of the total number of statistically significant results (Benjamini and Hochberg,

1995, pp. 291-292). In the context of testing the statistical significance of M̂E
z

x at multiple

values of z, the FDR is the proportion of statistically significant values of M̂E
z

x for which

the null is actually true (i.e., MEz
x = 0) in repeated tests. The second approach involves

controlling the familywise error rate (FWER), or the proportion of the time that a set of

multiple comparisons (a “family” of hypothesis tests) will produce at least one false rejection

of the null hypothesis (Abdi, 2007, pp. 2-4). For testing M̂E
z

x at multiple values of z, the

FWER is the proportion of the time (in repeated tests) in which at least one M̂E
z

x is statis-
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tically significant when the true MEz
x = 0. In general, a test that sets the FWER at some

value is a more conservative procedure than a test that limits the FDR to the same value:

a single rejection of any hypothesis where the null is true in a set of multiple comparisons

raises the FWER, whereas the FDR allows a fixed level of false positives as a proportion of

all statistically significant results. Consequently, procedures that control the FWER tend to

be less powerful than those which control the FDR (Benjamini and Hochberg, 1995, p. 290).

A researcher can control the FDR for interacted relationships by adapting the procedure

of Benjamini and Hochberg (1995, p. 293-294; see also Spahn and Franco, 2015). For

a categorical interaction variable z with m categories, their procedure suggests that the

researcher should rank order each of the p-values, pk for k ∈ {1...m}; p1 is the smallest p

value and pm is the largest, with k the rank index. Then, find the largest rank, k = k?,

that satisfies pk < α k
m

. The researcher then rejects the null hypothesis for all M̂E
zj

x from

j = 1...k? at level α; this procedure ensures that the FDR is no larger than α, though it can

(in some cases) be smaller (see Theorem 1 in Benjamini and Hochberg, 1995).16 To visually

depict which marginal effects are statistically significant, a researcher can use the critical

t-statistic t? corresponding to αk?

m
when constructing a 95% CI using β̂ ± t? ∗ se

(
M̂E

z0
x

)
at all

values of z0. Note that this procedure also imposes a weak limit on the FWER: when all null

hypotheses are true, i.e. (∂y/∂x | z = z0) = 0 for all values of z0, the FDR is equivalent to

the FWER (Benjamini and Hochberg, 1995, p. 291).

Put another way, this procedure orders the p-values for all relevant values of z, and

determines how many rejections of the null hypothesis can be made such that all p-values for

the rejected hypotheses are less than the value of α multiplied by k?

m
. The 1

m
is a Bonferroni-

type adjustment for multiple comparisons; this multiplier ‘deflates’ α to account for the joint

probability of at least one false positive when m-many tests are conducted (Benjamini and

Hochberg, 1995, p. 293). The innovation of Benjamini and Hochberg (1995) is to shift the

16Our explanation of the Benjamini and Hochberg (1995) procedure borrows from the surprisingly good
description available on Wikipedia (as of 8/21/2015), which also contains an excellent summary of the
false discovery rate and its relationship to the multiple comparison problem. This page is available at
https://en.wikipedia.org/wiki/False_discovery_rate.
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statistic of interest to the proportion of rejected null hypotheses for which the null is true

(instead of the probability of at least one rejection). This allows us to throw out highly

statistically insignificant results from consideration in declining order of p-value, starting

with k = m, until we find k?. As each subsequent p-value is discarded and k gets smaller,

the size target (α k
m

) to which all remaining p-values are compared also gets smaller. The

process stops when all p-values are less than the deflated size target, αk?

m
, which is then used

to find a critical t-statistic. This critical t-statistic, t?, can then be used to construct marginal

effects plots with confidence intervals visually similar to those of Brambor, Clark and Golder

(2006); if a researcher uses these CIs to test multiple hypotheses, at most α proportion

of the rejected null hypotheses will be false; the FDR is controlled at α. If k? = 1, the

Bonferroni and Benjamini-Hochberg deflation factors are identical. The procedure to find an

appropriate FDR-controlling t? for marginal effects calculated from an interaction model is

included as a part of the new interactionTest R library that we developed for this paper.

For controlling the FWER, Kam and Franzese (2007, pp. 43-51) recommend conducting

a joint F -test to determine whether M̂E
z

x 6= 0 for any value of z when interaction between

x and z (or other variables) is suspected. For a simple linear DGP with two variables of

interest, this means running two models:

1. ŷ = β̂0 + β̂xx+ β̂zz + β̂xzxz

2. ŷ = β̂0 + β̂zz

Then, the researcher can use an F -test to see whether the restrictions of model (2) can be

rejected by the data. If so, the researcher can proceed to construct, plot, and interpret M̂E
z

x

using the procedure described in Brambor, Clark and Golder (2006).17

17A joint F -test of coefficients is a direct test for the statistical significance of ∂ŷ/∂x = β̂x + β̂xzz against
the null that βx = βxz = 0. For a generalized linear model with a non-linear link, this relationship between
coefficients and marginal effects is not direct. Therefore, an F -test for restriction in these models may not
correspond to a test for the statistical significance of marginal effects for the same reason that the statistical
significance of coefficients in non-interaction relationships in a GLM does not necessarily indicate the sta-
tistical significance of marginal effects (Berry, DeMeritt and Esarey, 2010). In this case, the bootstrapping
procedure described in the next subsection can be adapted to limit the FWER to 5%.
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Table 4: FDR and FWER control results for MEx = ∂y/∂x*

FDR FWER (F -test)

continuous z continuous z

ρxz binary z uniform normal binary z uniform normal

0.99 0.0498 0.0294 0.0432 0.0487 0.0343 0.0277
0.9 0.0478 0.0319 0.0359 0.0468 0.0470 0.0296
0.5 0.0495 0.0365 0.0322 0.0448 0.0538 0.0376
0.2 0.0513 0.0323 0.0290 0.0476 0.0480 0.0375
0 0.0525 0.0345 0.0339 0.0488 0.0517 0.0396

-0.2 0.0509 0.0320 0.0309 0.0478 0.0494 0.0378
-0.5 0.0504 0.0353 0.0318 0.0493 0.0531 0.0366
-0.9 0.0502 0.0313 0.0344 0.0481 0.0462 0.0286
-0.99 0.0503 0.0324 0.0413 0.0482 0.0339 0.0226

*The reported number in the “FDR” column is the percentage of the time that a statistically sig-
nificant (two-tailed, α = 0.05) marginal effect ∂y/∂x for any z is detected in a model of the DGP
from equation (1) when βx = βz = βxz = 0 using the procedure of Benjamini and Hochberg
(1995). The reported number in the “FWER” column is the percentage of the time that a sta-
tistically significant (two-tailed, α = 0.05) marginal effect ∂y/∂x for any z is detected in a model
of the DGP from equation (1) when βx = βz = βxz = 0 and simultaneously where an F -test
for the joint significance of βx and βxz has been passed (two-tailed, α = 0.05); this procedure
is recommended by Kam and Franzese (2007). Figures are determined using 10,000 simulated
data sets with 1,000 observations each from the DGP y = 0.2 + u, u ∼ Φ(0, 1). When z is con-
tinuous, x and z are either (a) drawn from a multivariate distribution with uniform marginals

and a multivariate normal copula with mean zero and VCV =

[
1 ρ
ρ 1

]
(column “uniform”), or

(b) drawn from the bivariate normal distribution with mean zero and VCV =

[
1 ρ
ρ 1

]
(column

“normal”). When z is binary, x and z? are drawn from the bivariate normal with mean zero and

VCV =

[
1 ρ
ρ 1

]
and Pr(z = 1) = Φ(z?|µ = 0, σ = 0.5). Analytic SEs are used to determine

statistical significance: se
(
M̂E

z0
x

)
=

√
var
(
β̂x

)
+ (z0)

2 var
(
β̂xz

)
+ 2z0cov

(
β̂x, β̂xz

)
and the 95%

CI is
(
β̂x + β̂xzz0

)
± tFDR ∗ se

(
M̂E

z0
x

)
for the FDR and

(
β̂x + β̂xzz0

)
± 1.96 ∗ se

(
M̂E

z0
x

)
for

the FWER. The value of tFDR is determined by following the Benjamini and Hochberg (1995)
procedure for controlling the false discovery rate (as described in the text), then setting tFDR

to the t-statistic with a critical value of α k
m for the appropriate value of k; for continuous values of

z, the number of points z0 at which ∂y/∂x|z0 is used for m (we use 11 points in our simulations).
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We used both of these procedures on the simulated data from Table 2; in each case, we

set the target false positive rate (FDR or FWER) of the procedure to 0.05, two-tailed. The

results are shown in Table 4. Because all the null hypotheses are true in the simulated data

set (that is, M̂E
z0

x = 0 for all z0), both the procedures should yield roughly equivalent results

(because the FDR in this case is equivalent to the FWER). Indeed, as the table indicates,

both procedures are effective at limiting false rejections of the null to a probability of / 5%.

Underconfidence corrections for estimated marginal effects

As noted above, the Brambor, Clark and Golder (2006) procedure is underconfident whenever

a researcher is trying to conduct a conjoint test of multiple interaction relationships predicted

by a pre-existing theory. Consequently, the appropriate critical t value to set a 5% probability

of falsely rejecting the null of this conjoint test when examining confidence intervals is not the

typical t = 1.96 (for n→∞). Instead, we suggest a nonparametric bootstrapping approach

to hypothesis testing that chooses the appropriate critical t.

The intuition behind our approach is simple: using simulation, figure out a critical t?

statistic that will produce joint confirmation of all a theory’s marginal effect predictions

α proportion of the time when in fact all the marginal effects are zero. If we use this t?

to construct confidence intervals for marginal effects plots (using the normal formula for

confidence intervals and the analytically calculated standard errors from the original model

on the full data set) in the style of Brambor, Clark and Golder (2006), we will be able to

simply look at these plots to determine whether the theory’s marginal effects predictions are

supported by evidence with the reassurance that this procedure will yield a false positive

empirical confirmation of the predictions at most 100∗α percent of the time when all marginal

effects are zero.

The specific step-by-step details of our procedure are described in an appendix; however,

we provide R code to implement this procedure for generalized linear models as a part of our

interactionTest R library. This R library leverages the boot package (Canty and Ripley,
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2016) to perform ordinary bootstrap resampling of the target data set. The bootstrapping

process can be computationally intensive and lengthy; to speed up performance, the boot

package can interface with the snow library (Tierney et al., 2015) to use parallel processing

with multiple CPU cores for faster computation. Our library documentation provides an

example of using parallel processing through snow.

We tested the effectiveness of the nonparametric bootstrapping procedure in 1,000 sim-

ulated data sets with N = 1000 observations when all marginal effects are zero for four

different patterns of theoretical predictions; these theoretical predictions, the rejection rate

of the bootstrapping procedure, and the median critical t found by the bootstrapping pro-

cedure are shown in Table 5. We also show the proportion of the time that using the critical

t statistic generated from the bootstrapping procedure results in a rejection of the null hy-

pothesis of the corresponding hypothesis test.18 The table shows that different patterns of

predictions have a different probability of appearing by chance, which in turn necessitate a

different critical t statistic; furthermore, this critical t changes according to the correlation

between x and z. Indeed, some patterns are so unlikely under some conditions that nearly

any estimates matching the pattern are not ascribable to chance, regardless of their uncer-

tainty. The procedure results in false positive rates that match the nominal 5% rate targeted

by the test.

Suggestion 3: specify theories with multiple predictions in advance

and use bootstrapped critical t statistics to maximize empirical

power

Correcting for the overconfidence of conventional pointwise 95% confidence intervals when

performing interaction tests does come at a price: when the null hypothesis is false, the

sensitivity of the corrected test is necessarily less than that of an uncorrected test. This

18The specific null of each test varies according to the specifics of the prediction being tested; see the notes
in Table 5 for details.
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tradeoff is fundamental to all hypothesis tests and not specific to the analysis of interaction:

lowering the size of the test, as we do by setting the FDR or FWER to 0.05, weakens the

power of a test to detect relationships when they are actually there. On the other hand,

correcting for underconfidence when simultaneously testing multiple theoretical predictions

makes (jointly) confirming these predictions easier.

As a result, we suggest that researchers generate and simultaneously test multiple em-

pirical predictions whenever possible to maximize the power of their empirical test. For

interaction terms, this means:

1. predicting the existence and direction of a marginal effect for multiple values of the

intervening variable, and/or

2. predicting the existence and direction of the marginal effect of both constituent vari-

ables in an interaction.

This suggestion is subject to two important caveats. First, researchers must use bootstrapped-

derived critical t statistics (as in Table 3) in order to reap the benefit of a more powerful

test; simply testing each prediction separately using pointwise confidence intervals (as sug-

gested by Berry, Golder and Milton (2012)) would result in diminished power as a result of

using overly conservative tests (as shown in the previous section of this paper). Second, the

predictions must be made before consulting sample data in order for the lowered confidence

thresholds to apply. The lowered significance thresholds are predicated on the likelihood of

simultaneous appearance of a particular combination of results when all marginal effects are

zero, not on the joint likelihood of many possible combinations of results.
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Application: Rehabilitating “Rehabilitating Duverger’s

Law” (Clark and Golder, 2006)

After publishing their recommendations for the proper hypothesis test of a marginal effect in

the linear model with interaction terms, Clark and Golder (2006) went on to apply this advice

in a Comparative Political Studies paper examining the relationship between the number of

political parties in a polity and the electoral institutions of that polity. Their reassessment

of Duverger’s Law applies the spirit behind the simple relationship between seats and parties

predicted by Duverger to specify a microfoundational mechanism by which institutions and

sociological factors are linked to political party viability. Based on a reanalysis of their

results with the methods that we propose, we believe that some of the authors’ conclusions

are more uncertain than originally believed.

Clark and Golder (2006) expect that ethnic heterogeneity (one social pressure for political

fragmentation) will have a positive relationship with the number of parties that gets larger

as average district magnitude increases. Specifically, they propose:

“Hypothesis 4: Social heterogeneity increases the number of electoral parties

only when the district magnitude is sufficiently large” (Clark and Golder, 2006,

p. 694).

We interpret their hypothesis to mean that the marginal effect of ethnic heterogeneity on

the number of electoral parties should be positive when district magnitude is large, and

statistically insignificant when district magnitude is small. To test for the presence of this

relationship, the authors construct plots depicting the estimated marginal effect of ethnic

heterogeneity on number of parties at different levels of district magnitude for a pooled sample

of developed democracies, for 1980s cross-sectional data (using the data from Amorim Neto

and Cox (2007)), and for established democracies in the 1990s. In all three samples, they

find that ethnic heterogeneity has a positive and statistically significant effect on the number

of parties once district magnitude becomes sufficiently large.
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Figure 2 displays our replications of the marginal effects plots from Clark and Golder

(2006). We show three different confidence intervals: (i) the authors’ 90% confidence intervals

(using a conventional t-test), (ii) a 90% CI with a nonparametrically bootstrapped critical t

designed to set the false positive rate at 5% for the pattern of predictions where MEz<2.5
x is

statistically insignificant and MEz≥2.5
x > 0, which we call the “prediction-corrected” CI, and

(iii) a 90% CI constructed using the FDR-controlling procedure of Benjamini and Hochberg

(1995). We also calculate and show the results of a joint F -test as prescribed by Kam and

Franzese (2007).

None of the joint F -tests for the statistical significance of the marginal effect of ethnic

heterogeneity yield one-tailed p-values less than 0.1. Additionally, FDR-controlling 90%

confidence intervals constructing using the procedure we describe above include zero across

the entire range of district magnitude for the sample of established democracies in the 1990s.

However, in the other two samples, the coverage of the 90% FDR confidence intervals confirms

the authors’ original results, albeit with somewhat greater uncertainty. In addition, the

authors’ original findings are statistically significant and consistent with their pattern of

theoretical predictions when we employ the prediction-corrected 90% confidence intervals.

In summary, our analysis indicates that the authors’ claims are most strongly supported

by a combination of the empirical information they collect with the prior theoretical pre-

diction of an unlikely pattern of results. Their results cannot be supported by a procedure

that sets the FWER at 90%, and are only partially supported by a procedure that sets the

FDR at 90%. We believe that this re-interpretation of the authors’ findings is important

for readers to understand in order for them to grasp the strength of the results and the

assumptions upon which these results are based.
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Conclusion

The main argument of this study is that, when it comes to the contextually conditional

(interactive) relationships that have motivated a great deal of recent research, the Brambor,

Clark and Golder (2006) procedure for testing for a relationship between x and y at different

values of z does not effectively control the probability of a false positive finding. The prob-

ability of at least one relationship being statistically significant is higher than one expects

because the structure of interaction models divides a data set into multiple subsets defined

by z, each of which has a chance of showing evidence for a relationship between x and y

when none really exists. On the other hand, the possibility of simultaneously confirming

multiple theoretical predictions by chance alone can be quite small because this requires a

large number of individually unlikely events to occur together, making the combination of

these events collectively even more unlikely. The consequence is that false positive rates may

be considerably higher or lower than researchers believe when they conduct their tests. A

further consequence is that researchers using this procedure are implictly applying inconsis-

tent standards to assess whether evidence tends to support or undermine a theory when that

theory makes multiple empirical predictions.

Fortunately, we believe that specifying a consistent false positive rate for interactive

relationships is a comparatively simple matter of following a few rules of thumb:

1. do not condition inference about marginal effects on the statistical significance of the

product term;

2. if a relationship is close to statistical significance under conventional tests, use proce-

dures that control the overall false discovery rate and/or familywise error rate, such

as the sequential test procedure of Benjamini and Hochberg (1995) or the joint F -test

recommended by Kam and Franzese (2007); and

3. if possible, generate multiple hypotheses about contextual relationships before consult-

ing the sample data and test them as a group using a nonparametric bootstrapping
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procedure to generate the appropriate critical t value, because it maximizes the power

of the study.

Our new interactionTest software package for R makes it easy for applied researchers to

control the FDR when they create marginal effects plots in the mode of Brambor, Clark

and Golder (2006), even in the complex case where multiple theoretical predictions present

a threat of underconfident statistical hypothesis tests.

None of these recommendations constitutes a fundamental revision to the way we con-

ceptualize or depict conditional relationships. Rather, they allow us to ensure that evidence

we collect is compared to a counterfactual world in a controlled fashion and consistent with

the hypothesis tests that we perform in other situations. All of our recommendations can

be implemented in standard statistical packages; we hope that researchers will keep them

in mind when embarking on future work involving the assessment of conditional marginal

effects.
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Appendix: Bootstrapping Procedure for Controlling False

Positive Rates in Conjoint Theoretical Prediction Tests

The specific procedure that our interactionTest library uses to calculate a critical t statistic
using nonparametric bootstrapping is as follows:

1. For a particular data set, run a model ŷ = G
(
β̂0 + β̂1x+ β̂2z + β̂2xz + controls

)
with

link function G. Calculate M̂E
z0

x , M̂E
x0

z , and their standard errors for multiple values
of z0 and x0 using the fitted model.

2. Draw (with replacement) a random sample of data from the data set.

3. Run the model ŷ = G
(
β̃0 + β̃1x+ β̃2z + β̃2xz + controls

)
on the bootstrap sam-

ple from step 2. Calculate M̃E
z0

x , M̃E
x0

z , and their standard errors (se(M̃E
z0

x ) and

se(M̃E
x0

z )) using the model for multiple values of x0 and z0 in the range of x and z
respectively; the standard errors can be analytically derived and calculated using each
model estimate. (The tilde distinguishes the bootstrap replicates from the hat used for
estimates on the original sample.)

4. Calculate t̃z0x = M̃E
z0
x −M̂E

z0
x

se(M̃E
z0
x )

and t̃x0
z = M̃E

x0
z −M̂E

x0
z

se(M̃E
x0
z )

for all values of z0 and x0. (Sub-

tracting M̂E
z0

x or M̂E
x0

z allows us to determine the distribution of t when the marginal
effect equals zero.)

5. Repeat steps 2-4 many times; we use 10,000 bootstrap replicates.

6. Using the bootstrapped values of tx and tz, find a critical t statistic t? such that all
theoretical predictions are confirmed α proportion of the time when all marginal effects
equal zero. For example, if a theory predicts that MEx > 0|z > z0 and MEz < 0|x >
x0, t

? would satisfy Pr
[(
∃z > z0 : t̃zx > t?

)
∧
(
∃x > x0 : t̃xz < −t?

)]
= α.

7. Use the t? to construct plots of M̂Ex and/or M̂Ez with confidence intervals; for M̂Ex,

these confidence intervals are given by M̂E
z0
x ± t? ∗ se

(
M̂E

z0
x

)
.

The confidence intervals for marginal effects plots constructed using this t? will yield a false
positive empirical confirmation of all the tested predictions at most 100 ∗ α percent of the
time when all marginal effects are zero.
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