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Abstract

Two contributions in this issue, Grant and Lebo (2015) and Keele, Linn and Webb
(2015), recommend using an ARFIMA model to diagnose the presence of and estimate
the degree of fractional integration, then either (i) fractionally differencing the data
before analysis or, (ii) for cointegrated variables, estimating a fractional error correction
model. But Keele, Linn and Webb (2015) also presents evidence that ARFIMA models
yield misleading indicators of the presence and degree of fractional integration in a series
with fewer than 1000 observations. In a simulation study, I find evidence that the simple
autodistributed lag model (ADL) or equivalent error correction model (ECM) can,
without first testing or correcting for fractional integration, provide a useful estimate
of the immediate and long-run effects of weakly exogenous variables in fractionally
integrated (but stationary) data.

Introduction

Political scientists strive to study the substantive meaning of temporal dynamics rather than

to treat them as nuisances to be fixed in the error term (Beck and Katz, 1996). If the

autodistributed lag (ADL) and mathematically equivalent error correction models (ECM)

described by De Boef and Keele (2008) have been inappropriately used in some instances,

I suspect that it is out of a laudable desire to pursue this agenda. This issue’s article by

Grant and Lebo (2015) reminds us that how we handle the nuisances is still important, and

that doing so improperly can lead to “discovering” non-existent relationships. In particular,

I concur with Grant and Lebo’s advice to carefully assess the stationarity of variables prior

∗Assistant Professor of Political Science, Rice University. E-mail: justin@justinesarey.com.
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to analysis: time series analysis of non-stationary variables without appropriate differencing

(or an appropriate ECM, if variables are cointegrated) can yield misleading results. This

advice is also encapsulated in Keele, Linn, and Webb’s (2015) very helpful Table 5.

But the analysis guidelines produced by Grant and Lebo (2015) and Keele, Linn and

Webb (2015) raise a significant question about the handling of fractionally integrated data.

When fractional integration is suspected in a time series, both articles recommend measuring

the degree of fractional integration d with an ARFIMA model, then using d to either (i)

fractionally difference the data before analysis, or (ii) when co-integration is present, estimate

a fractional ECM model. But Keele, Linn and Webb (2015) are also justifiably skeptical of

the ARFIMA model’s ability to recover d in a data set with a small number of temporal

observations T . First, they present simulation evidence (in Figure 1) that ARFIMA estimates

of d are both noisy and biased when T < 1000. They also show that the ARFIMA model

frequently produces false positive results for d in non-fractionally-integrated data under the

same circumstances. They cite prior studies indicating that these limitations of the ARFIMA

model have been observed by other researchers. Finally, they express concern that complex

models in very short data sets (with many parameters per observation) are likely to be

overfitted. If fractionally integrated data are both ubiquitous (as Grant and Lebo (2015)

suggest they are) and difficult to study in short data sets, the evidence offered by Keele,

Linn and Webb (2015) suggests that a large number of important questions in political

science may be very difficult to answer using the recommended methodology.

I examine an alternative: if data might be fractionally integrated but are stationary (and

the independent variables are weakly exogenous), estimate an ADL/ECM model on the data

without first estimating d and fractionally differencing. Although this model is undoubtedly

misspecified, it may nevertheless provide an accurate approximation of important dynamic

relationships in the data. Moreover, it is considerably simpler than the ARFIMA model

and perhaps less-susceptible to over-fitting. In a simulation study, I find evidence that an

ADL/ECM can accurately detect and recover immediate and long-run relationships in this
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setting while avoiding false positives. Consequently, the ADL/ECM appears to be a valid

option for studying short T data sets with fractional integration. The results suggest that

dealing with the non-stationarity and/or co-integration of time series data is a methodolog-

ically higher priority compared to correcting for possible fractional integration, and that

researchers may generally trust the results of ADL/ECM models in this environment.

Approximating ARFIMA data with ADL/ECM models

The general form of an ARFIMA process for a variable y, as defined by Shumway and Stoffer

(2010, p. 272), is written as:

φ(L)(1− L)d(yt − µt) = θ(L)εt (1)

where t = 1...T indexes time, a non-integer d indicates a degree of fractional differenc-

ing, φ(L) is an autoregressive function of lag operators1 L which acts on the fractionally-

differenced and de-meaned y,2 and θ(L) is a moving average function lag operators which

acts on the white noise term ε.3 When y is suspected to be fractionally integrated, Grant and

Lebo (2015) and Keele, Linn and Webb (2015) recommend estimating d using an ARFIMA

model that matches this process, then fractionally differencing y before determining its re-

lationship with other variables like x. x may also need to be differenced prior to analysis as

well; a fractional ECM may be possible if x and y share the same d.

Given the objections to ARFIMA modeling in short T data sets raised by Keele, Linn

and Webb (2015), it may be possible to use the ADL/ECM to approximate a fractionally

integrated data generating process in order to recover both immediate and long-run relation-

ships dy/dx when x is weakly exogenous with respect to y.4 As long as d ∈ (−1
2
, 1
2
), a series

1The lag operator is: L(xt) = xt−1, with higher multiples of L leading to deeper lags (e.g., L2(xt) = xt−2).
2Specifically, φ(L) = 1− φ1L− φ2L2 − ...− φpLp with p the order of the AR process.
3Specifically, θ(L) = 1 + θL + θL2 + ... + θqL

q with q the order of the MA process. For more details on
ARFIMA modeling, see Shumway and Stoffer (2010) pp. 12, 85, and 90.

4Weak exogeneity implies that y does not have a direct or indirect (error-mediated) causal impact on x;
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like equation 1 is stationary (Shumway and Stoffer, 2010, p. 269); De Boef and Keele (2008)

demonstrated that the ADL/ECM can be very useful for studying dynamic relationships in

stationary data.

The ADL/ECM is obviously misspecified for the data generating process in equation

(1). The intent is not to precisely mirror the data generating process, but to approximate

immediate and long-run relationships between x and y within an acceptable degree of error.

Given the problems that Keele, Linn and Webb (2015) identify in estimating d in short

panels (and the complexity of time series analysis in general), some form of misspecification

may be inevitable. Moreover, because the ADL/ECM is a relatively simple model, the risk

of overfitting may be reduced compared to the more complex ARFIMA model.

Grant and Lebo (2015) is primarily motivated by imprudent use of the ADL/ECM model

that often finds relationships among variables where none exist. Thus, to recommend the

use of ADL/ECM models to study fractionally integrated data without first fractionally

differencing, it is imperative to demonstrate that this use does not encounter the problems

that they identify. The key issue is whether the long-run memory present in a series with

fractional integration creates spurious or severely biased estimates of short- or long-run

relationships between x and y. I answer this question using a simulation study.

Monte Carlo evidence

Consonant with the concerns of Grant and Lebo (2015), my simulation study is designed to

answer four questions:

1. Do ADL/ECM models find immediate or instantaneous relationships in fractionally

integrated data where they do not exist?

2. Do ADL/ECM models find long-term or dynamic relationships in fractionally inte-

grated data where they do not exist?

see Enders (2015, pp. 394-395) for details.
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3. Can ADL/ECM models accurately recover the magnitude and direction of immedi-

ate/instantaneous relationships in fractionally integrated data where they do exist?

4. Can ADL/ECM models accurately recover the magnitude and direction of long term

relationships in fractionally integrated data where they do exist?

To answer these questions, I create three simulated data generating processes with different

characteristics. Specifically, I vary the relationship between x and y: the possibilities are

that (1) changes in x have no impact on y, (2) permanent changes in x at time t∗ have an

immediate, permanent impact on y at time t∗ but no further impact, and (3) permanent

changes in x have an immediate impact on y that continues to increase over time as a

long-run adjustment in y. Because Keele, Linn and Webb (2015) note that difficulties in

estimating d are most acute in short data sets, I assess the ADL’s suitability for time series

with T = 100; this is sufficiently short that we might be skeptical of estimates of d from an

ARFIMA model.

Fractionally-integrated DGPs without long-term adjustment

To simulate fractionally integrated data for y and x, I create data using an ARFIMA process

with the form:

(1− 0.5L)(1− L)d(yt − µt) = εt (2)

µt = γxxt (3)

(1− 0.5L)(1− L)0.3xt = ψt (4)

γx = 0 when there is no relationship between x and y; I set γx = 0.5 when there is such a

relationship. In this ARFIMA process, the short-run and long-run impacts of x are identical;

the mean of y shifts immediately to reflect a change in x, and fluctuations around this

mean (which are subject to long memory) are unrelated to the value of x. I vary d ∈
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{0, 0.1, 0.2, 0.3, 0.4, 0.45}, similar to Keele, Linn and Webb (2015). The noise terms ε and

ψ are ∼ N(0, 1). Series for y and x of length T = 100 out of this process are generated using

the arfima.sim function in the arfima package for R. I draw 1000 data sets for each Monte

Carlo study.

For each data set, I estimate an ADL model5 of the form:

yt = β0 + β1yt−1 + β2∆xt + β3xt−1 + ζt (5)

where ∆xt = xt − xt−1 and its coefficient β2 shows the immediate impact of a change in x

on y at the time of the change, t∗. The long run impact of a permanent change in x on y is

given by LRM = β3/(1−β1); I estimate the Bewley transformation of the model (described

in De Boef and Keele, 2008) in order to measure this impact and its variance.6

False positive rates for immediate and long-run impacts

When γx = 0 in equation (3), there is no immediate or long-term impact of x on y. In this

environment, I designate a false positive immediate impact as a statistically significant value

of β̂2 using a two-tailed t-test, α = 0.05. I similarly designate a false positive long run impact

as a statistically significant ̂LRM using the same test.

Consider Figure 1, which shows the estimated values of β̂2 and ̂LRM for each of the 1000

simulated data sets and the percentage of estimates that are statistically significant. As the

figures make clear, both the immediate impacts (estimates of β̂2 from equation 5) and long

run impacts (estimates of ̂LRM using the Bewley method) are consistently centered on zero

with false positive rates near the nominal α = 0.05 value of the statistical significance test.

In other words, in fractionally integrated data, the ADL is resistant to finding immediate

and long-run relationships between y and x where they do not exist.

5There is a mathematically equivalent ECM for this model, as laid out in De Boef and Keele (2008) and
Keele, Linn and Webb (2015); I focus on the ADL formulation for ease of interpretation.

6The Bewley model estimates yt = α0 +α1∆yt +α2xt +α3∆xt + ηt, using yt−1 as an instrument for ∆yt.
The coefficient α2 is the estimate of LRM , with its estimated variance as the variance of this impact.
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True positive rates and accuracy estimates

When γx = 0.5 in equation (3), the immediate impact of y on x is the same as the long-run

impact: 0.5. If the ADL model can accurately approximate the relationships in this data set,

it should show an accurate and identical immediate and long-term impact (β̂2 = ̂LRM =

0.5). I designate a true positive immediate impact as a statistically significant value of β̂2

using a two-tailed t-test, α = 0.05; I use the same test for detecting true positive ̂LRM
values.

Figure 2 shows the estimated values of β̂2 and ̂LRM for 1000 data sets simulated under

these conditions. Both immediate and long-run impact estimates are properly centered on

the correct value of 0.5. However, the degree of noise in the estimate of long-run impacts

increases as d gets closer to 0.5 and y gets closer to being non-stationary. This additional

noise hurts the ADL model’s ability to distinguish the estimated LRM from zero; when

d = 0.45, only about a quarter of true positive long-run relationships are detected.

However, I believe that in the presence of an immediate impact of x on y, it may sometimes

be reasonable to assert that the null expectation for the long-run relationship should be equal

to the immediate impact. If changes in x are not theoretically expected to “wear off” over

time, then the effect of y caused by a change in x at time t∗ should persist by inertia beyond

that time point. Consequently, I also test the hypothesis that β2 6= LRM against the null

that β2 = LRM , showing the results in a second line of numbers in Figure 2b.7 For this test,

the ADL (falsely) rejects this null only slightly more often than the expected α = 0.05 rate.

7To test the hypothesis that β2 6= LRM , I draw 1000 simulated values from asymptotic distribution of the
ADL model and subtract the draws for β̂2 from those for the LRM = β̂3/(1− β̂1), subtract the 1000 draws,
then use the difference as a parametric bootstrap approximation of the difference between the immediate
and long run impact. I then examine the 2.5th and 97.5th quantiles of these differences to test whether any
difference is statistically significant.
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Fractionally-integrated DGPs that include long-term adjustment

To simulate fractionally integrated data for y and x that includes a long-term adjustment, I

slightly modify the ARFIMA process in equations (2-4):

(1− 0.5L)(1− L)d(yt) = κt (6)

κt = γxxt + εt (7)

(1− 0.5L)(1− L)0.3xt = ψt (8)

This allows changes in x to propagate into the ARFIMA process by directly entering the

noise term; a change in x at time t∗ will have continuing impacts on y after that time as the

initial impacts echo through the lag structure of y.

I assess the accuracy of the immediate impact of x on y as before: β̂2 should be statistically

significant and = 0.5 if the ADL yields accurate results. Given the existence of a gradual,

long-term adjustment in y initiated by a change in x, I also assess how well the ADL can

match the trajectory of change in y following an single permanent change in x. Specifically,

once an ADL model is fitted, I set x = 0, set the lagged value of yt−1 in order to put the

system into an equilibrium y∗, simulate a change in x of 1 at time t∗, then calculate ŷ from

this model for t∗ + c from c = 1...15. I then compare the difference between y∗ and ŷt∗+c

calculated from the ADL to the true difference as simulated using the true parameters and

arfima.sim. This process gives a sense of how well the ADL is able to approximate the

unfolding of the data generating process over time after a change in x.

The results are shown in Figure 3. As in the case with identical immediate and long-run

impacts, the ADL does an excellent job of accurately measuring the immediate dy/dx and

rejecting the null hypothesis. The estimated ̂LRM is statistically significant over 93% of the

time (and over 98% when d < 0.45); additionally, it is statistically distinguishable from the

immediate impact β̂2 over 92% of the time.8

8I use the same parametric bootstrapping technique for this test as laid out in footnote 7.
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As shown in Figure 3b, the trajectory of long-run changes in y over time is estimated

with progressively greater noise as the temporal distance from the intervention gets larger;

this noise also gets larger as d grows. Additionally, there is a tendency of the ADL model

to underestimate the magnitude of long-run changes, especially when d is close to 0.5. The

underestimation of long-run impacts makes sense: fractionally integrated time series are

equivalent to very long autodistributed lag models (Shumway and Stoffer, 2010, pp. 268-

269) while the ADL includes just one lag. Consequently, a change in x has effects that

propagate cumulatively over a long period of time; the ADL must approximate this process

with a much smaller number of lags of y.

Conclusion

My simulation study leads to four conclusions about the use of ADL/ECM models to study

the immediate and long-run effects of a fractionally integrated (but stationary) and weakly

exogenous variable x on a fractionally integrated y. Under the conditions of the simulation:

1. ADL/ECM models did not find immediate or instantaneous effects of x on y

in fractionally integrated data where they do not exist; standard t-tests for the

coefficient on ∆xt in the ADL produced false positives at close to the expected rate.

2. ADL/ECM models did not find long-run effects of x on y in fractionally in-

tegrated data where they do not exist. Again, standard t-tests for the long-run

multiplier (LRM) estimated by the Bewley transformation of the ADL produced false

positives at close to the expected rate.

3. ADL/ECM models accurately identified and recovered the magnitude and

direction of immediate impacts of x on y in fractionally integrated data where

they existed.

4. ADL/ECM models detected the presence of long-run impacts greater than

12



the immediate effect of x on y in fractionally integrated data, but the magnitudes

were underestimated and tests for distinguishability from the immediate impact

were more useful than tests against a long-run impact of zero.

Based on these conclusions, it appears that ADL/ECM models are very useful for recovering

the immediate impact of x on y, despite fractional integration. The results for long-run im-

pacts are not quite as robust: these impacts are likely to be underestimated by an ADL/ECM

run on fractionally integrated data, possibly because the very long memory of such series

allows for an especially extended impact on y of a one-time permanent change in x. Never-

theless, hypothesis tests on the LRM do allow it to be distinguished from immediate impacts

where appropriate, and do not allow it to be distinguished when there is no long-term cu-

mulative effect.

My overall recommendation is to slightly refine the advice of Grant and Lebo (2015)

and Keele, Linn and Webb (2015). In non-fractionally-cointegrated data sets with many

temporal observations T , it seems appropriate to estimate d with an ARFIMA model and

fractionally difference a variable prior to estimation as indicated in Keele, Linn, and Webb’s

Table 5. But an ADL/ECM provides a serviceable approximation in a short T data set,

where d is inaccurately estimated and overfitting is a concern. This recommendation does

not absolve a researcher of the responsibility to establish that the studied data are stationary

(and that the independent variables are weakly exogenous) before applying the ADL/ECM;

based on prior research, I would still expect the ADL/ECM to be a very problematic choice

for non-stationary (and non-cointegrated) or endogenously related variables.
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